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Figure 1: Given two input videos (top and bottom rows), we create a video morph (middle). Both the alignment of spatial features
and the synchronization of local motions are obtained using a spatiotemporal optimization with relatively little user guidance
(here 46 mouse clicks).

Abstract
We explore creating smooth transitions between videos of different scenes. As in traditional image morphing, good
spatial correspondence is crucial to prevent ghosting, especially at silhouettes. Video morphing presents added
challenges. Because motions are often unsynchronized, temporal alignment is also necessary. Applying morphing to
individual frames leads to discontinuities, so temporal coherence must be considered. Our approach is to optimize
a full spatiotemporal mapping between the two videos. We reduce tedious interactions by letting the optimization
derive the fine-scale map given only sparse user-specified constraints. For robustness, the optimization objective
examines structural similarity of the video content. We demonstrate the approach on a variety of videos, obtaining
results using few explicit correspondences.

Categories and Subject Descriptors (according to ACM CCS): I.3.0 [Computer Graphics]: General—Video Processing

1. Introduction

Creating smooth transitions (morphs) between images is a
well studied problem in computer graphics. In contrast, there
is relatively less research on generalizing this concept to
videos (Section 2). Because a morph of two images results
in a video, a direct generalization would be to morph two

videos into a sequence of videos, i.e. a 4D volume. This
would be analogous to morphing between two volumetric
datasets [LGL95].

Instead, the problem we address is to generate a single
output video. The early and late frames in the output video
should be similar to those in the corresponding input videos.
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In the intermediate frames, objects should start to behave and
look like the corresponding objects in the other input video.

Some striking early examples of video morphing in-
clude the face transitions in Michael Jackson’s “Black or
White” music video [PDI91] and the Exxon car-tiger com-
mercial [PDI92]. Such results are obtained with extensive
manual interaction, often involving adjustment of many cor-
respondence points on individual frames.

In this paper we explore a semi-automated technique for
optimizing a morph between a pair of videos of different
scenes. Our main goal is to leverage numerical optimization
to align the video content automatically, both spatially and
temporally, so that the user need only guide the process at a
high level using sparse correspondences. For example, Fig-
ure 1 shows a transition between a video of a talking woman
and a video of meowing cat, obtained using only 16 corre-
spondence points adjusted in 46 mouse clicks.

Whereas the main difficulty in image morphing is to es-
tablish a spatial mapping, video morphing has the additional
challenge of temporal synchronization. This issue may be alle-
viated by creating specially crafted content (e.g., professional
dancers timing their moves to a reference choreography). In
this work we consider ordinary video content acquired by
amateurs. Because we rely on sparse user correspondences,
the simple approach of optimizing spatial mappings on each
frame individually results in videos that lack proper motion
continuity (as shown on the accompanying video).

In addressing these difficulties, our approach is to construct
a smooth 3D spatiotemporal map between the videos. The
approach incorporates the following elements:

• The inter-video map is represented using a 3D-valued vec-
tor field on a 3D spatiotemporal halfway domain, and is
solved using a coarse-to-fine optimization.
• The objective function considers structural similarity of

corresponding pixel neighborhoods of the two videos, and
is regularized using a thin-plate-spline smoothness term.
• The optimization is accelerated using GPU parallelism.
• We introduce a temporal coherence term to guide the map

using estimated optical flow.
• The solution is obtained in two successive stages: temporal

synchronization and spatial optimization.

The first three elements adapt and extend concepts from the
image morphing work of Liao et al. [LLN∗14], as discussed
in Section 3. Our novel temporal coherence and synchroniza-
tion elements let our approach work on a broader set of input
videos compared to traditional video morphing techniques.

2. Related work

Image morphing There is extensive research literature on
the computation of image morphs, including entire books
[Wol90, GDCV99]. Several techniques address the key chal-
lenge of establishing an appropriate mapping between images

[BN92, LCS95, GS98, MZD05, MHM∗09, WL12, LLN∗14].
Given the map, trajectories must be computed that slowly
transform the position and color of each point in one image to
the mapped values in the other image. While these techniques
employ some geometric construction or optimization to solve
for the mapping, when dealing with morphing of different
objects, the computation of correspondences is inherently
ambiguous and ill-posed. In those situations, the usual
strategy is to obtain sparse correspondences from the user,
which are then enforced during the optimization.

Video morphing There is comparatively less research
on morphing videos. Early work relies on painstak-
ing annotation of each individual pair of corresponding
frames [PDI91, BN92]. Surprisingly, this approach is still
commonplace [CSM∗13] despite the increase in the compu-
tational power available to assist the task. Two papers address
this issue. Szewczyk et al. [SFAS97] use feature-tracking
methods to ease the burden of designers by transferring man-
ually selected feature correspondences from one frame to
the next. They perform video matting and apply morphing
separately to each video layer to improve morphing qual-
ity. Yu and Wu [YW04] use combinatorial optimization on
each frame to automatically align image points with similar
color neighborhoods. Their optimization uses a sequence of
alternating dynamic programming algorithms in the two di-
mensions. In both these earlier techniques, it is assumed that
the videos are already temporally synchronized.

In contrast, our video morphing scheme aims for full spa-
tiotemporal alignment of two unsynchronized videos. We cast
this alignment as a continuous optimization that considers
temporal coherence with the underlying optical flow. We use
structural similarity for improved matching robustness and
exploit GPU parallelism for the costly spatial optimization.

Other video processing techniques Video textures
[SSSE00, KSE∗03, AZP∗05], cliplets [JMD∗12], cinema-
graphs [TPSK11, BAAR12], and video loops [LJH13] are
all techniques for finding seamless transitions from a sin-
gle video segment to itself. This is achieved by finding
compatible video frames or compatible spatiotemporal sur-
faces within the 3D video volume. Similarly, Rüegg et
al. [RWSG13] composite different videos of the same scene
by solving for a spatiotemporal transition surface using a
graph cut. Poisson blending is often used to improve visual
continuity at transitions [MHM∗09]. Zitnick et al. [ZKU∗04]
perform view interpolation between several input videos.
Kalantari et al. [KSB∗13] combine optical flow and patch-
based synthesis to reconstruct high dynamic range video. All
these techniques assume video(s) of a single scene rather than
a morph between different objects.

Sand et al. [ST04] and Diego et al. [DSL13] propose meth-
ods that temporally align video sequences recorded from
independent moving cameras. Their approaches automati-
cally find correspondences between frame pairs from the two
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input videos and also bring them into spatial alignment. Un-
like their methods, our temporal synchronization approach
is spatially adaptive, and thus can synchronize motions with
different speeds in different regions of the input videos. This
is vital for our morphing application which must deal with
arbitrary animations of different non-rigid moving subjects.

3. Approach overview

The two input videos V0, V1 are color functions V (x, y, t)
over 3D spatiotemporal domains. We denote a spatiotemporal
point as p = (px, py, pt) = (pxy, pt) where pxy is its 2D
spatial position.

To represent a continuous spatiotemporal map between the
two input videos, we extend the image morphing framework
of Liao et al. [LLN∗14]. Let Ω denote the 3D spatiotemporal
domain that is conceptually halfway between the two videos.
Let v be a 3D-valued vector field defined over Ω, which
induces two continuous, invertible maps φ0, φ1 from the
halfway domain to each of the two input video domains:

φ0(p) = p− v(p) and φ1(p) = p+ v(p).

The inter-video map from V0 to V1 is the composition φ1 ◦
φ−1

0 . The construction is nicely symmetric, as swapping the
two videos simply corresponds to negating the field v.

The goal is to optimize the vector field v to minimize an
objective function:

min
v
E with E =

∑
p∈Ω

E(p). (1)

Our initial attempt was a direct generalization of the ob-
jective energy used by Liao et al. [LLN∗14]. The original
formulation is as follows:

E(p) = ESIM (p) + λETPS (p) + γ EUI (p), (2)

where

• ESIM (p) evaluates the structural similarity of the mapped
image neighborhoods φ0(N(p)) and φ1(N(p)), in
which N(p) denotes the 5× 5 pixels nearest to p.
• ETPS computes a thin-plate spline function on the 2D-

valued vector field v, thus encouraging it to be smooth.
• EUI (p) introduces soft constraints on v(p) near each

halfway point between corresponding 2D image corre-
spondence points specified in the user interface.

The full generalization to video morphing involves

1. extending the neighborhoods N to be spatiotemporal (e.g.
5× 5× 5),

2. defining the thin-plate spline (TPS) function on v which
is now a 3D-valued function over the 3D domain Ω,

3. generalizing the UI constraints to be spatiotemporal, and
4. performing coarse-to-fine optimization using all three ob-

jective terms over the 3D domain Ω.

However, the straightforward generalization proves both
challenging and inadequate for a number of reasons. The
large spatiotemporal neighborhoods link together many of
the unknown coefficients in v, thus making the evaluation
of ∂E/∂v expensive. When the correspondence field v in-
cludes a temporal component, constraining injectivity of the
functions φ0 and φ1 (i.e. preventing foldovers in the map)
is more costly. Also, the mapped neighborhood φ0(N(p))
of each spatiotemporal point p gets warped in time, thus re-
quiring costly 3D sampling. We find that the 3D-valued TPS
function leads to an overly smooth solution that fails to adapt
to sudden changes in optical flow present in the input videos.
Finally, the full 3D hierarchical optimization requires build-
ing video pyramids, and averaging videos in the temporal
direction tends to blur their content, which hinders spatial
matching at coarse levels.

Instead, we find greater success using a two-stage approach:

• In the first stage, we still optimize the 3D-valued vector
field v over the 3D domain Ω, but omit the expensive
structural similarity term ESIM . The aim is to solve for
a smooth temporal correspondence map between the two
videos, using only a crude spatial alignment guided by the
sparse user-specified points. We use the temporal compo-
nent vt of this correspondence map to temporally resample
the input videos, thus synchronizing them without spatially
advecting their content.

• In the second stage, given the synchronized videos, we
again solve an optimization over the 3D domain Ω but
using only a 2D-valued vector field vxy (i.e. with vt fixed
to zero). We introduce a new objective term ETC to mea-
sure the temporal coherence of vxy with respect to the
estimated optical flows of both videos.

In addition to the advantages outlined earlier, in practice
this proposed two level approach is 5× faster than a full
generalization of image morphing.

4. User interface and correspondences

Figure 2 shows our system’s user interface. It provides opera-
tions to add, edit, and remove correspondence points across
the two input videos. Red points denote user-specified points,
and yellow points denote those propagated automatically to
other frames using optical flow. The user may optionally ad-
just the position of a propagated feature point, thereby adding
a new specified point for that feature.

Thus, each feature correspondence i has one or more pairs
of user-specified spatiotemporal correspondence points ûa

i,j

(where a ∈ {0, 1} is the input video and j is the pair index),
each storing a location (x, y, t) in input video Va. The spa-
tial location of each feature correspondence i is propagated
both backwards and forwards from frames with specified
points to every other frame t using precomputed optical flow
[WTP∗09]. More precisely, we obtain ua

i (t) for each frame t
by finding the forward and backward propagated points from
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Figure 2: Our system shows the two input videos with over-
laid correspondence points (top). It provides feedback on
morph quality using both a halfway morph and a contin-
uously animating video morph that oscillates forward and
backward in time (bottom).

the nearest ûa
i,j and linearly blending the two points accord-

ing to the temporal distances of the ûa
i,j from t.

Each correspondence point also carries a confidence
weight wa

i (t) that determines its impact during the optimiza-
tion stages. This weight decays from 1 as the point’s spatial
neighborhood begins to differ from the neighborhoods of the
temporally nearest user-specified points ûa

i,j . Specifically, we
measure histogram correlation over 7 × 7 neighborhoods,
and again linearly interpolate correlations from the nearest
backward and forward ûa

i,j according to temporal distance.

When specified points are added or modified, the feature
propagation is re-evaluated. Because optical flow is precom-
puted, propagation occurs in real-time, allowing for efficient
creation of accurate correspondences. Please see the demo in
the accompanying video.

5. Temporal synchronization

In this first stage of optimization (Figure 3), we temporally
align regions of the input video so that they are in agreement
with the specified correspondences. This amounts to a spa-
tially adaptive temporal synchronization of the videos. In the
case of two input videos of unequal duration, the duration
of the halfway domain is their average duration, and tempo-
ral synchronization resamples both videos to this common
duration.

Objective As discussed in Section 3, the objective in stage 1
has the form

E(p) = λETPS (p) + γ EUI (p), (3)

with constants λ = 0.01 and γ = 100 in all our results.

Figure 3: Example showing two input videos simply blended
together (top) and blended after temporal synchroniza-
tion (bottom).

Smoothness energy The thin-plate spline energy measures
smoothness of the function v over both its spatial and tempo-
ral components:

ETPS (p) = TPS
(
vx(p)

)
+ TPS

(
vy(p)

)
+ TPS

(
vt(p)

)
,

TPS
(
vx(p)

)
=
(∂2vx(p)

∂px2

)2
+
(∂2vx(p)

∂py2

)2
+
(∂2vx(p)

∂pt2

)2
+

2
(∂2vx(p)

∂pxpy

)2
+ 2
(∂2vx(p)

∂pypt

)2
+ 2
(∂2vx(p)

∂ptpx

)2
,

and analogously for TPS
(
vy(p)

)
and TPS

(
vt(p)

)
.

User interface energy The correspondences are enforced
through soft constraints in the spatiotemporal domain. Essen-
tially, we desire that the halfway domain grid position that
lies halfway between each pair of specified correspondences
should map back to those same two correspondence points in
the two input videos.

Thus, for each pair of correspondence points û0
i,j , û

1
i,j , we

compute the spatiotemporal midpoint ūi,j = (û0
i,j + û1

i,j)/2
and the expected vector field value v̂i,j = (û1

i,j − û0
i,j)/2.

Because ūi,j does not in general fall on top of a grid
point p ∈ Ω, we enforce soft constraints on the eight nearest
spatiotemporal neighbors {pk} of ūi,j . Each soft constraint
is weighted by the corresponding trilinear weight b(p, ūi,j):

8∑
k=1

b(pk, ūi,j) p
k = ūi,j . (4)

The user interface energy is

EUI (p) =
1

A

∑
i,j

b(p, ūi,j)
∥∥v(p)− v̂i,j)

∥∥2
, (5)

where A, the area in pixels of the halfway domain, is intro-
duced to attain resolution independence in the coarse-to-fine
solver. Thus, EUI(p) = 0 at any gridpoint p that is not
adjacent to a constraint.

Solver In stage 1, finding the map function v that mini-
mizes E is a sparse linear least squares problem. We solve
it using a coarse-to-fine approach similar to that in Liao et
al. [LLN∗14]. We build a 3D pyramid over the spatiotemporal
domain of each input video by averaging both spatially and
temporally. We then run a conjugate-gradient solver (imple-
mented with NVIDIA’s cuSPARSE library) on progressively
finer grids in the halfway domain.
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Figure 4: Temporal resampling for video synchronization.

Temporal resampling Having obtained the inter-video
map, for each input video Va we create the synchronized
video V ′a using the following resampling procedure. For
each pixel q = (qxy, qt) in V ′a , we seek the point p ∈ Ω
that (1) has the same time qt and (2) spatially maps to qxy:

p = (pxy, qt) s.t. pxy + (2a− 1)vxy(p) = qxy. (6)

Having obtained p, we sample the input video at the original
spatial location qxy but using the temporal map defined at p
(see Figure 4):

V ′a(q) = Va

(
qxy, qt + (2a− 1)vt(p)

)
. (7)

Computing point pxy in Equation (6) involves solving
an inverse map. It is achieved efficiently using an iterative
search (similar to that in the rendering algorithm of Liao et
al. [LLN∗14]):

p(0)
xy = qxy, (8)

v(0)
xy = vxy(p(0)

xy ), (9)

p(i+1)
xy = qxy − (2a− 1) v(i)

xy , (10)

v(i+1)
xy = (η)vxy

(
p(i+1)
xy

)
+ (1− η)v(i)

xy . (11)

We use an exponential smoothing factor η (0.8 in all results)
to improve convergence. Because the vector field v is smooth,
the search usually converges in a few iterations.

In the resampling process of Equation (7), the tempo-
ral source value t′ = qt + (2a− 1)vt(p) generally requires
sampling between two successive frames. To avoid ghost-
ing due to averaging, we perform another iterative search
using precomputed optical flow F to find the correspond-
ing points in the two frames and appropriately blend them.
Formally, to evaluate Va(qxy, t

′), we find the corresponding
point (rxy, bt′c) in the preceding frame as:

r(0)
xy = qxy, (12)

f (0)
xy = F (r(0)

xy , bt′c), (13)

r(i+1)
xy = qxy − (t′ − bt′c)f (i)

xy , (14)

f (i+1)
xy = (η)F (r(i+1)

xy , bt′c) + (1− η)f (i)
xy . (15)

The corresponding point in the succeeding frame is given by
(rxy + F (rxy, bt′c), bt′c+ 1). We then interpolate the two
colors using t′.

Figure 5: Result of spatial optimization on the example of
Figure 3.

6. Spatial Optimization

In this second stage, we seek to spatially align the frames
of the two temporally synchronized videos (Figure 5). The
solver iterates on each pair of corresponding frames, employ-
ing a sequence of 2D optimizations rather than the single 3D
optimization required for temporal synchronization.

Objective For each frame t, we solve

min
v
E with E =

∑
p∈Ωt

E(p), where

E(p) = ESIM (p) + λETPSxy(p) + γEUIxy(p) + βETC (p),

with constants λ = 0.005, γ = 100, and β = 0.1 in all our
results. Note that v is now a 2D-valued function on the 2D do-
main Ωt. (In this section, points p, q also refer to 2D points.)

The similarity energy ESIM encourages matching between
5 × 5 neighborhoods that have similar edge structure. We
refer the reader to Liao et al. [LLN∗14] for further details on
this energy term.

The smoothness energy ETPSxy operates as in the first
stage, but only spatially:

ETPSxy (p) = TPSxy

(
vx(p)

)
+ TPSxy

(
vy(p)

)
,

TPSxy

(
vx(p)

)
=
(∂2vx(p)

∂px2

)2
+ 2
(∂2vx(p)

∂pxpy

)2
+
(∂2vx(p)

∂py2

)2
,

and analogously for TPS
(
vy(p)

)
. Figure 6 illustrates the

importance of this regularizing smoothness term. Its weight
λ is kept small to make it comparable with the other terms.

λ = 0.005

λ = 0

Figure 6: Importance of the smoothness energy ETPSxy . The
middle column shows the morphing results; left and right
columns show the deformation of the halfway domain grid
overlayed on the input video frames for solutions with and
without the smoothness energy term.
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The energy EUIxy is also defined just spatially. Whereas
EUI in the temporal synchronization stage considered only
the specified correspondence points û, here we include all
propagated correspondence points ua

i (t) (along with their
associated weights wa

i (t)) to bring the features into spatial
correspondence in all frames:

EUIxy (p)=
1

A

∑
i,t′

w0
i (t′)w1

i (t′) b(p, ūi(t
′))
∥∥v(p)−(v̂i(t

′))xy
∥∥2
.

Temporal coherence The new term ETC replaces the tem-
poral derivatives omitted in ETPSxy . Guided by optical flow
estimates, it attempts to preserve consistent mappings across
the video frames and thus avoid popping artifacts (as shown in
our accompanying video). Intuitively, if we were to forward-
warp the videos and their respective correspondences from
the previous frame to the current frame using optical flow, we
would like the correspondences to match those attained in the
current frame.

More precisely, ETC (p) is defined as follows (see Fig-
ure 7). Let the halfway optical flow F 1/2(r) of a domain
point r ∈ Ωt′ be the average of the optical flows F 0, F 1

from the input videos V 0, V 1 under the map given by v:

F 1/2(r, t′) = (F 0(r − v(r), t′) + F 1(r + v(r), t′))/2.

Given the domain pixel p in the current frame t, we first
need to find the corresponding domain pixel q in the previous
frame t− 1 whose halfway optical flow maps it to p, i.e.
satisfying

q + F 1/2(q, t− 1) = p. (16)

To find q, we again resort to iterative search:

q(0) = p, (17)

f (0) = F 1/2(q(0), t− 1), (18)

q(i+1) = p− f (i), (19)

f (i+1) = (η)
(
F 1/2(q(i+1)), t− 1

)
+ (1− η)f (i). (20)

Given q, we advect the corresponding points q − v(q) and
q + v(q) to the current frame and measure their differences
from points p− v(p) and p+ v(p) respectively, as illustrated
by the two symmetric red lines in Figure 7. Interestingly, after
substitutions with (6,16), the two difference vectors are seen
to be exact opposites:

(q−v(q)) + F 0(q−v(q), t−1)− (p−v(p))

= −v(q) +
(
F 0(q−v(q), t−1)− F 1(q+v(q), t−1)

)
/2− v(p),

(q+v(q)) + F 1(q+v(q), t−1)− (p+v(p))

= v(q) +
(
F 1(q+v(q), t−1)− F 0(q−v(q), t−1)

)
/2 + v(p).

Thus we define the temporal coherence error as

ETC (p)=−ESIM (q)
∥∥v(q)−v(p) + q−p+ F 1(q+v(q), t−1)

∥∥,
where ESIM (q) is used as an attenuation factor so that tem-
poral coherence is disregarded if the mapping at q has high
similarity error (and is therefore unreliable).

frame 𝑡-1 

video 0 video 1 halfway domain 

frame 𝑡 

𝑞 − 𝑣 𝑞  𝑞 + 𝑣 𝑞  

𝑝 

𝐹0 𝑞 − 𝑣 𝑞  𝐹1 𝑞 + 𝑣 𝑞  𝐹0 𝑞 − 𝑣 𝑞 + 𝐹1 𝑞 + 𝑣 𝑞 /2 

𝑝 − 𝑣 𝑝  𝑝 + 𝑣 𝑝  

𝑞 

Figure 7: Computation of temporal coherence energy.

Solver We again use a coarse-to-fine iterative solver. To
avoid ghosting effects during the optimization, when con-
structing the 3D pyramid we perform point-sampling along
the temporal dimension. In each level, successive 2D opti-
mizations are performed on the halfway domain of each pair
of matching frames from the two resampled videos. We use
an iterative optimization procedure following the approach
described in Liao et al. [LLN∗14] but using the new nonlinear
energy function described above.

7. Results

After generating the mappings for all frames, we use the ap-
proach of Liao et al. [LLN∗14] to create the final video. This
includes the use of quadratic motion paths, Poisson-extended
boundaries, and rendering using direct pixel evaluation.

A subset of frames from our video morph results are shown
in Figures 1, 8, 10, and 11. Note that the structural similarity
term properly aligns the boundaries and the temporal coher-
ence term makes the mapping smooth (see accompanying
video). Even on the challenging woman-cat example with the
twitching cat ears, and the dog-lion example with different
backgrounds, the method produces a good transition.

Figure 11 focuses on the improvement due to temporal
synchronization in two examples. In the input videos (first
rows), one can note the unsynchronized motions of legs and
arms in the walk scene and the wings of the butterflies in the
butterfly scene. The second row shows the result omitting
the temporal synchronization step and applying spatial opti-
mization directly. Note that the approach fails to produce a
proper transition. After temporal synchronization, shown on
the third row, we can then better spatially align the features
and produce the morph shown in the fourth row. Note that
we selected the frames that better show the temporal mis-
alignment. Figure 8 shows additional results. Earlier works
do not apply any kind of temporal synchronization and do
not achieve temporal coherence, resulting in artifacts unless
the input videos already have similar motions. Please refer to
the accompanying video for a demonstration of results with
and without temporal coherence.

Table 1 reports quantitative results for all examples in the
paper. The number of correspondences {i} and total number
of point adjustments {i, j} (mouse clicks) vary significantly
depending on the similarity of the two input videos. Note that
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α = 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 8: Additional video morph results.

the temporal resampling stage takes less than a minute for all
examples, and the final spatial optimization takes around 2–4
minutes. It is important to note that when interactively adding
correspondence points, the user seldom needs to wait until
the entire optimization completes. The partial results from
the coarse level usually suffice to get a sense of whether more
correspondence points are needed or whether the optimization
is converging to a well aligned result.

Limitations Since our approach computes a smooth map-
ping for the entire frame, it is problematic to blend videos of
foreground subjects with shifted background. This is shown
in the weightlifting example of Figure 12. Spatially opti-
mizing the foreground subject results in distortions on the
background. This can only be addressed by matting the back-
ground prior to the morph and processing it separately.

If there are significant topological differences between
the features of the videos, a continuous mapping cannot be
achieved. Note that in the top row of Figure 9, the man’s
arm extends beyond his body, unlike in the bottom row. It
is therefore impossible to generate a continuous mapping

Table 1: Statistics for all the results in the paper.

Dataset Processing times* (sec)

Fig Image Resolution Points Clicks Temp. Spatial Flow Total

1 woman-cat 560× 560× 74 16 46 22.3 199.8 32.2 254.3

8 child-lady 640× 480× 160 7 28 67.6 233.1 79.3 380.0
dance 600× 720× 80 11 48 40.3 131.4 31.2 202.9
woman 800× 600× 70 7 25 28.6 120.8 34.4 183.8
leopard-dog 640× 360× 80 10 78 35.1 162.3 25.7 223.1
man-woman 800× 600× 80 10 34 23.0 156.0 40.0 219.0
plane 800× 600× 80 8 18 37.1 178.9 40.2 256.2

10 flower 512× 512× 80 5 16 23.4 151.8 30.3 205.5
ball 800× 600× 110 8 37 48.5 236.9 58.4 343.8
dog-lion 800× 600× 100 8 32 39.7 204.6 29.8 274.1

11 walk 600× 720× 80 6 34 42.5 127.9 37.9 208.3
butterfly 512× 512× 70 6 40 34.8 183.4 25.3 243.5

*Hardware: NVIDIA GTX 780, Intel Core i7 @ 3.6GHz, 16GB RAM.

between the two videos without blending the background of
the top example with the foreground of the bottom example.
The middle row shows the inadequate blended result. To
handle such topological changes during animation, one might
consider 3D shape proxies [HDK07].
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Figure 9: Inadequate blending (middle column) caused by
topological differences between the features in the input
videos (left and right column).

8. Conclusion

We present a new approach to create smooth transitions be-
tween videos of different objects. We leverage some of the
machinery developed for image morphing and adapt it to
address issues related to video synchronization and tempo-
ral coherence of the mapping. We show how our interface
and GPU-accelerated algorithms allow a user to efficiently
morph between challenging input videos. In future work, we
would like to explore the possibilities of allowing discontinu-
ities in our mapping, to address situations in which there is
disagreement between foreground and background motions.
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[RWSG13] RÜEGG J., WANG O., SMOLIC A., GROSS M.: Duct-
Take: Seam-based compositing. Computer Graphics Forum (Proc.
of Eurographics) 32, 2 (2013). 2

[SFAS97] SZEWCZYK R., FERENCZ A., ANDREWS H., SMITH
B. C.: Motion and feature-based video metamorphosis. In Proc.
of ACM Multimedia (1997). 2
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α = 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 10: For each video morph result, the top and bottom rows show frames from the input videos and the middle row shows
the resulting morph sequence.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.



J. Liao & R. S. Lima & D. Nehab & H. Hoppe & P. V. Sander / Semi-Automated Video Morphing

Figure 11: Benefits of temporal synchronization. In each example, the four rows show (1) blending of the input videos, (2)
the result of directly performing spatial optimization without synchronization and the resulting artifacts, (3) blending of the
temporally synchronized videos, and (4) the final result that combines both temporal synchronization and spatial optimization.

Figure 12: In this video morph result, the shift in the Olympic rings in the background makes it impossible to properly align both
the foreground and background elements using the same smooth mapping.
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