
View-based Rendering: Visualizing Real
Objects from Scanned Range and Color Data

Kari Pulli� Michael Coheny Tom Duchamp�

Hugues Hoppey Linda Shapiro� Werner Stuetzle�
�University of Washington, Seattle, WA
yMicrosoft Research, Redmond, WA

Abstract

Modeling arbitrary real objects is difficult and rendering textured models typi-
cally does not result in realistic images. We describe a new method for displaying
scanned real objects, called view-based rendering. The method takes as input a col-
lection of colored range images covering the object and creates a collection of partial
object models. Thesepartial models are rendered separatelyusing traditional graph-
ics hardware and blended together using various weights and soft z-buffering. We
demonstrate interactive viewing of real, non-trivial objects that would be difficult
to model using traditional methods.

1 Introduction
In traditional model-based rendering a geometric model of a scene, together with sur-
face reflectance properties and lighting parameters, is used to generate an image of the
scene from a desired viewpoint. In contrast, in image-based rendering a set of images
of a scene are taken from (possibly) known viewpoints and used to create new images.
Image-based rendering has been an area of active research in the past few years because
it can be used to address two problems:

Efficient rendering of complicated scenes. Some applications of rendering, such as
walk-throughs of complex environments, require generation of images at inter-
active rates. One way to achieve this is to render the scene from a suitably cho-
sen set of viewpoints. Images required during walk-through are then synthesized
from the images computed during the pre-processing step. This idea is based on
the premise that interpolation between images is faster than rendering the scene.

Three-dimensional display of real-world objects. Suppose we wish to capture the ap-
pearance of a 3D object in a way that allows the viewer to see it from any chosen
viewpoint. An obvious solution is to create a model of the object capturing its
shape and surface reflectance properties. However, generating realistic models of
complex 3D objects is a nontrivialproblem that we will further discuss below. Al-
ternatively, we can capture images of the object from a collection of viewpoints,
and then use those to synthesize new images.

The motivation for our work is realistic display of real objects. We present a method,
view-based rendering, that lies in between purely model-based and purely image-based
methods.

The constructionof a full 3D model needed for model-based rendering requires a num-
ber of steps: 1) acquisition of range and color data from a number of viewpoints chosen
to get complete coverage of the object, 2) registration of these data into a single coor-
dinate system, 3) representation of all the data by a surface model that agrees with all
the images, 4) computation of a surface reflection model at each point of this surface
using the colors observed in the various images. Despite recent advances [4, 16], auto-
matically creating accurate surface models of complex objects (step 3) is still a difficult
task, while the computation of accurate reflection models (step 4) has hardly been ad-
dressed. In addition, the rendered images of such models do not look quite as realistic as
photographs that can capture intricate geometric texture and global illumination effects
with ease.

Our idea is to forgo construction of a full 3D object model. Rather, we create indepen-
dent models for the depth maps observed from each viewpoint, a much simpler task. In-
stead of having to gather and manipulate a set of images dense enough for purely image-
based rendering, we make do with a much sparser set of images, but use geometric in-
formation to more accurately interpolate between them. A request for an image of the
object from a specified viewpoint is satisfied using the color and geometry in the stored
views. This paper describes our new view-based rendering algorithm and shows results
on non-trivial real objects.

The paper is organized as follows. Section 2 casts image-based rendering as an in-
terpolation problem, where samples of the light field function are interpolated to create
new images. Section 3 describes our view-based rendering approach. Section 4 presents
details of our implementation, including data acquisition, view-based model generation,
and use of graphics hardware for efficient implementation, and some results. Section 5
covers related work. Section 6 discusses hardware acceleration and concludes the paper.

2 Image-based rendering as an interpolation problem
The basic problem in image-based render-
ing is to compute an image of a scene as
seen from some target viewpoint, using a
set of input images, their correspondingcam-
era poses, and possibly additional associ-
ated information. A useful abstraction in
this context is the light field function (also
known as the plenoptic function). Levoy
and Hanrahan [12] define the light field as
the radiance at a point in a given direction.
For our purposes, it is more convenient to

(a) (b)

Figure 1: (a) A pencil of rays describes the colors of
visible points from a given point. (b) The light field
function describes the colors of all rays starting from
any point.

define the light field as the radiance at a point from a given direction (see Figure 1).
More precisely, we define a ray to be a directed half-line originating from a 3D base-
point. We may therefore represent a ray as an ordered pair (x,n̂) � IR3

� S2, where x is
its basepoint, n̂ is its direction, and S2 denotes the unit sphere. The light field is then a
function f : IR3

�S2
� IR3 which assigns to each ray (x, n̂) an RGB-color f (x, n̂). Thus,

f (x, n̂) measures the radiance at x in the direction �n̂. The collection of rays starting
from a point is called a pencil. If we had complete knowledge of the light field func-

tion, we could render any view from any location x by associating a ray (or an average
of rays) in the pencil based at x to each pixel of a virtual camera.

The full light field function is only needed to render entire environments from an arbi-
trary viewpoint. If we are content with rendering individual objects from some standoff
distance, it suffices to know the light field function for the subset of IR3

�S2 of “inward”
rays originating from points on a convex surface M that encloses
the object. Following Gortler et al. [9], we call this simpler func-
tion a lumigraph. We call the surface M that encloses the object
the lumigraph surface. Figure 2 shows a schematic of the lumi-
graph domain for the case where the lumigraph surface is a sphere.

The lumigraph contains all rays needed to synthesize an image
from any viewpoint exterior to the convex hull of the object being
modeled. Each pixel in the image defines a ray that intersects the
lumigraph surface M at a point, say x. If n̂ is the direction of that

Figure 2: A spherical
lumigraph surface.

ray, then the RGB-color value assigned to the pixel is f (x, n̂).
2.1 Distance measures for rays
In practice we will never be able to acquire the full 5D light field function or even a
complete 4D lumigraph. Instead we will have a discrete set of images of the scene, taken
at some finite resolution. In other words, we have the values of the function for a sample
of rays (really for local averages of the light field function). To render the scene from
a new viewpoint, we need to estimate the values of the function for a set of query rays
from its values for the sample rays. Thus, image-based rendering is an interpolation
problem.

In a generic interpolation problem, one is given the values of a function at a discrete
set of sample points. The function value at a new query point is estimated by a weighted
average of function values at the sample points, with weights concentrating on samples
that are close to the query point. The performance of any interpolation method is criti-
cally dependent on the definition of “closeness”.

In image-based rendering, the aim is to paint pixels on the image plane of a virtual
camera, and therefore the renderer looks for rays close to the one associated with some
particular pixel. In the next two sections we examine two closeness measures.

2.1.1 Ray-surface intersection
Figure 3 shows a piece of a lumigraph with several pencils of rays. In Fig. 3(a) there is
no information about the object surface geometry. In that case we have to concentrate
on pencils whose origins are close to the query ray and interpolate between rays that are
parallel to the query ray. The denser the pencils are on the the lumigraph surface M, and
the more rays in each pencil, the better the match we can expect to find.

Assuming that the object is a Lambertian reflector, the lumigraph representation has
a high degree of redundancy: there are many rays that intersect the object surface at the
same point. Figure 3(b) shows a case where the precise object geometry is not known,
but there is an estimate of the average distance between the object surface and the lu-
migraph surface. We can estimate where the query ray intersects the object surface and
choose rays from nearby pencils that point to the intersection point. The expected error
in our estimate of f (x, n̂) should now be less than in case (a). Or, to obtain the same error,
we need far fewer sample rays (i.e. images).

(a) (b) (c)

Figure 3 The query ray is dotted; sample rays are solid. (a) Choose similar
rays. (b) Choose rays pointing to where the query ray meets surface. (c) Choose
rays intersecting the surface where the query ray does.

Figure 3(c) illustrates the case where there is accurate information about the object
geometry. To estimate f (x, n̂), we can locate the sample rays that intersect the object
surface at the same location as the query ray. With an accurate surface description it
is possible to find all the rays directed towards that location and even remove rays that
really intersect some other part of the surface first. Naturally, the expected error with a
given collection of rays is minimized.

2.1.2 Ray direction
To improve the estimate of the lighting function we can take into account the direction
and more heavily weight sample rays whose direction is near that of the query ray. There
are three justifications for this. First, few surfaces reflect the incoming lightuniformly in
every direction. A typical example of this is specular reflections on shiny surfaces, but
the appearance of many materials such as velvet or hair varies significantly with viewing
direction. In image-based rendering this suggests favoring rays with similar directions.

Second, undetected self-occlusions may cause us to incorrectly conclude that two sam-
ple rays intersect the object surface at the same point and lead us to incorrectly estimate
the light field function. If the occlusion is due to a large-scale object feature, and we
have enough information about the surface geometry, we may be able to notice the self-
occlusion and cull away occluded rays (see Fig. 3(c)). However, if the occlusion is due
to small scale surface geometry, and we have only approximate information of the sur-
face geometry, the occlusion is much harder to detect, as shown in Fig. 4(a). Moreover,
if the object has thin features, as illustrated in Fig. 4(b), then rays may approach the ob-
ject surface from opposite directions and intersect it at points that are spatially near, yet
far apart with respect to distance as measured along the surface. The likelihood of such
errors decreases by more heavily weighting sample rays whose directions are near the
direction of the query ray.

Third, as shown in Fig. 4(c), when the angle between the query ray and the sample
ray is large, small errors in the surface geometry can lead to large errors in the estimate
of distance between the intersection points with the object surface. We get more robust
results by favoring rays with similar direction to that of the query ray.

3 View-based rendering
The preprocessing of the input data is described in more detail in Section 4, but for clar-
ity we summarize it here. The input to our view-based rendering system is a set of views,

(a) (b) (c)

Figure 4 (a) Detailed surface geometry can cause occlusions that make the sur-
face appear different from different directions. (b) Thin features can cause a dis-
crepancy between surface distance and spatial distance of intersection points.
(c) The more parallel the rays the less damaging an error in an estimate of sur-
face distance.

i.e., colored range images of an object. Registering the range maps into a common coor-
dinate system gives us the camera locations and orientations of the colored images with
respect to the object. We replace each dense range map by a sparse triangle mesh that
closely approximates it. We then texture map each triangle mesh using the associated
colored image. To synthesize an image of the object from a fixed viewpointwe individu-
ally render the meshes constructed from three close viewpoints and blend them together
with a pixel-based weighting algorithm that uses soft z-buffering.

3.1 A simple approach
To better understand the virtues of our approach, it is helpful to contrast it with a simpler
algorithm. If we want to view the object from any of the stored viewpoints, we can place
a virtual camera at one of them and render the associated textured mesh. We can move
the virtual camera around by rendering the mesh from the new viewpoint. But as the
viewpoint changes, parts of the surface not seen from the original viewpoint become
visible, opening holes in the rendered image. If, however, the missing surface parts are
seen from one or more other stored viewpoints, we can fill the holes by simultaneously
rendering the textured meshes associated with the additional viewpoints. The resulting
image is a collage of several individual images.

The results are displayed in Fig. 10(a). In terms of ray interpolation, the graphics hard-
ware interpolates the rays within each view, finding a ray for each pixel that intersects
the surface approximately where the query ray of the pixel does. However, there is no
interpolation between the views, only the ray from the mesh that happens to be closest
to the camera at the pixel is chosen. With imperfect geometrical information and regis-
tration, we get a lot of visible artifacts.

We can improve on this by interpolating rays between different views. The next sec-
tiondescribes how we use various weights that account for such factors as viewing direc-
tions and surface sampling densities and how we blend rays correctly even in presence
of partial self-occlusions. The results of the better interpolation are shown in Fig. 10(b).

3.2 Three weights and soft z-buffering
We preprocess the viewing directions of the input views as follows. Each viewing di-
rection corresponds to a point on the unit sphere. The viewing directions thus define
a set of points on the sphere and we compute the Delaunay triangulation of this set, as
illustrated in Fig. 5(a).

viewing direction
of the virtual camera

views surrounding
the virtual camera

(a) (b)

φ

φ φ

φi

j k

Figure 5 (a) The weights w� assigned to the views at the vertices i, j, and k of
the Delaunay triangles containing the current view are its barycentric coordi-
nates. (b) The weight w� is the cosine of the angle � between the normal and
the ray to the sensor.

To synthesize an image of the object from a fixed viewpoint, we first select the three
views corresponding to the vertices of the Delaunay triangle containing the current view-
ing direction of the virtual camera. The textured mesh of each selected view is indi-
vidually rendered from this viewpoint to obtain three separate images. The images are
blended into a single image by the followingweighting scheme. Consider a single pixel.
We set c =

P3
i=1 wici�

P3
i=1 wi where ci is the color value associated with that pixel in

the ith image and wi is a weight designed to overcome the difficulties encountered in the
naive implementation mentioned above. The weight wi is the product of three weights
wi = w�,i �w�,i �w�,i , whose definition is illustrated in Figs. 5 and 9. Self-occlusions are
handled by using soft z-buffering to combine the images pixel by pixel.

The first weight, w�, measures the proximity of a chosen view to the current view-
point, and therefore changes dynamically as the virtual camera moves. We first calcu-
late the barycentric coordinate � of the current viewpoint with respect to the Delaunay
triangle containing it (see Fig. 5(a)). � has three components between 0.0 and 1.0 that
sum to 1.0, each associated with one of the triangle vertices. The components give the
weights that linearly interpolate the vertices to produce the current viewpoint. We define
the weight w� of view i to be the component of � associated with that view.

The remaining two weights w� and w� are pixel dependent but are independent of
the view direction of the virtual camera. The second weight w�is a measure of surface
sampling density (see Figs. 5(b) and 9(b)) and it is constant within each triangle in a
mesh. Consider a point on a triangle in the mesh of view i corresponding to a given
pixel. A small region of area A about the point projects to a region of area A cos� on the
“image plane” of the ith sensor, where � is the angle between the normal to the triangle
and the ray from the point to the sensor. We set w� = cos�. Darsa et al. [5] use a similar
weight.

The third weight w� which we call the blend weight, is designed to smoothly blend
the meshes at their boundaries. As illustrated by Fig. 9(c), the blend weight w�,i of view
i linearly increases with distance from the mesh boundary to the point projecting onto

the pixel. Whereas w� is associated with a view, and w� with the triangles approximat-
ing the geometry of the view, w� is associated with color texture of the view. A similar
weight was used by Debevec et al. [6].

Most self-occlusions are handled during rendering of individualviews using back-face
culling and z-buffering. When combining the view-based partial models, part of one
view’s model may occlude part of another view’s model. Unless the surfaces are rela-
tively close to each other, the occluded pixel must be excluded from contributing to the
pixel color. This is done by performing “soft” z-buffering, in software. First, we con-
sult the z-buffer information of each separately rendered view and search for the small-
est value. Views with z-values within a threshold from the closest are included in the
composition, others are excluded. The threshold is chosen to slightly exceed an upper
estimate of the combination of the sampling, registration, and polygonal approximation
errors.

Figure 6 illustrates a potential problem. In the picture the
view-based surface approximation of the rightmost camera
has failed to notice a step edge due to self-occlusion in the
data, and has incorrectly connected two surface regions. When
performing the soft z-buffering for the pixel corresponding to
the dashed line, the wrongly connected step edge would be so
much closer than the contribution from the other view that the
soft z-buffering would throw away the correct sample. How-

Figure 6: Problems with un-
detected step edges.

ever, while doing the soft z-buffering we can treat the weights as confidence measures.
If a pixel with a very low confidence value covers a pixel with a high confidence value,
the low confidence pixel is ignored altogether.

Rendering the registered geometry using graphics hardware and our soft z-buffering
finds rays that intersect the surface where the query ray of a pixel does. Weights w� and
w� are used to favor good rays in the sense discussed in Section 2, while w� is used to
hide the effects of inevitable inaccuracies due to the use of real scanned data.

4 Implementation
4.1 View acquisition
Data acquisition. We obtain the range data from a stereo camera system that uses ac-
tive light. Both cameras have been calibrated, and an uncalibrated light source sweeps
a beam (a vertical light plane) past the object in discrete steps. For each pixel on the
beam, we project its epipolar line to the right camera’s image plane. The intersection of
the epipolar line and the bright line gives a pixel that sees the same surface point as the
original pixel from the left camera. We obtain the 3D coordinates of that point by trian-
gulating the corresponding pixels. After the view has been scanned, we turn the lights
on and take a color picture of the object. The object is then repositioned so we can scan
it from a different viewpoint.
View registration. Registering the views using the range data aligns the range maps
around the object. A transformation applied to the range data also moves the sensor with
respect to an object centered coordinate system, giving us the relative camera positions
and orientations. We perform the initial registration interactively by marking identifi-
able object features in the color images. This initial registration is refined using Chen

and Medioni’s registration method [3] modified to deal with multiple data sets simulta-
neously.
Triangle mesh creation. We currently create the triangle meshes interactively. The
user marks the boundaries of the object by inserting points into the color image, while
the software incrementally updates a Delaunay triangulationof the vertices. The system
optimizes the z-coordinates of all the vertices so that the least squares error of the range
data approximation is minimized. Triangles that are almost parallel to the viewing di-
rection are discarded, since they are likely to be step edges, not a good approximation
of the object surface. Triangles outside of the object are discarded as well.

We have begun to automate the mesh creation phase. First, we place a blue cloth to
the background and scan the empty scene. Points whose geometry and color match the
data scanned from the empty scene are classified as background. The adding of vertices
is easily automated. For example, Garland and Heckbert [8] add vertices to image coor-
dinates where the current approximation is worst. The drawback of this approach is that
if the data contains step edges due to self-occlusions, the mesh is likely to become un-
necessarily dense before a good approximation is achieved. To prevent this we perform
a mesh simplification step using the mesh optimization methods by Hoppe et al. [10].

4.2 Rendering
We have built an interactive viewer for viewing the reconstructed images (see Figure 11).
For each frame, we find three views whose view directions surround the current view di-
rection on a unit sphere. The three views are then rendered separately from the viewpoint
of the virtual camera as textured triangle meshes and weighted using the barycentric co-
ordinates of the current view direction with respect to the chosen views.

Two of the weights, w� and w� are static for each view, as they do not depend on the
viewing direction of the virtual camera. We apply both of these weights offline and code
them into the alpha channels of the mesh color and the texture map. w� is the weight
used to decrease the importance of triangles that are tilted with respect to the scanner. It
is applied by assigning the RGBA color (1, 1, 1, w�) to each triangle. w� is the weight
used to hide artifacts at the mesh boundary of a view. It is directly applied to the alpha
channel of the texture map that stores the color information. We calculate the weights
for each pixel by first projecting the triangle mesh onto the color image and painting it
white on a black background. We then calculate the distance d for each white pixel to
the closest black pixel. The pixels with distances of at least n get alpha value 1; all other
pixels get the value d

n .
Figure 7 gives the pseudo code

for the view composition algo-
rithm. The function
min reliable z�� returns the
minimum z for a given pixel,
unless the closest pixel is a low
confidence (weight) point that
wouldocclude a highconfidence
point, in which case the z for

FOR EACH pixel
 zmin := min_reliable_z(pixel)
 pixel_color := (0,0,0)
 pixel_weight := 0
 FOR EACH view
 IF zmin <= z[view,pixel] <= zmin+thrsoft_z THEN
 weight := wθ * wϕ * wγ
 pixel_color += weight * color[view,pixel]
 pixel_weight += weight
 ENDIF
 END
 color[pixel] := pixel_color / pixel_weight
END

Figure 7: Pseudo code for color blending.

the minimum high confidence point is returned.
When we render a triangle mesh with the described colors and texture maps, the hard-

ware calculates the correct weights for us. The alpha value in each pixel is w� � w� . It
is also possible to apply the remaining weight, w�, using graphics hardware. After we
render the views, we have to read in the information from the frame buffer. OpenGL
allows scaling each pixel while reading the frame buffer into memory. If we scale the
alpha channel by w�, the resulting alpha value contains the final weight w� � w� � w�.

4.3 Results
We have implemented our object visualizationmethod on an SGI Maximum Impact with
a 250 MHz MIPS 4400. We first obtain a polygonal approximation consisting of 100–
250 triangles for each view. The user is free to rotate, zoom, and pan the object in front of
the virtual camera. For each frame, we choose three views. The texture-mapped polygo-
nal approximations of the views are rendered from the current viewpoint separately into
256� 256 windows. The images are combined pixel by pixel into a composite image.

Figure 10 compares the simple approach of Section 3.1 to our view-based rendering
method that uses three weights and soft z-buffering (Section 3.2). In Fig. 10(a) three
views have been rendered repeatedly into the same frame from the viewpoint of the vir-
tual camera. The mesh boundaries are clearly visible and the result looks like a badly
made mosaic. In Fig. 10(b) the views have been blended smoothly pixel by pixel. Both
the dog and the flower basket are almost free of blending artifacts such as background
color showing at mesh boundaries and false surfaces due to undetected step edges in the
triangle meshes.

Our current implementation can deliver about 8 frames per second. The execution
time is roughlydivided into the followingcomponents. Rendering the three texture map-
ped triangle meshes takes 37%, reading the color and z-buffers into memory takes 13%,
building the composite image takes 44%, and displaying the result takes 6% of the total
execution time.

4.4 Additional hardware acceleration
The only parts of our algorithm not currently supported by graphics hardware are the
weighted pixel averaging and the soft z-buffering. The weighted averaging would be
easy to implement by allowing more bits for the accumulation buffer, interpreting the
alpha channel value as a weight instead of the opacity value, and providing a command
that divides the RGB channels by the alpha channel value. An approximate implemen-
tation of the soft z-buffering in hardware would require adding, replacing, or ignoring
the weighted color and the weight (alpha value) depending on whether the new pixel’s
z value is within, much closer, or much farther from the old z-value, respectively. For
exact implementation two passes are required: first find minimum reliable z, then blend
using soft threshold based on that minimum z.

5 Related work
Chen [1] and McMillan and Bishop [15] modeled environments by storing the light field
function around a point. The rays visible from a point are texture mapped to a cylinder
around that point, and any horizontal view can be created by warping a portion of the
cylinder to the image plane. Both systems allow limited rotations about a vertical axis,
but they do not support continuous translation of the viewpoint.

Levoy and Hanrahan [12] and Gortler et al. [9] developed image synthesis systems

that use a lumigraph and that support continuous translation and rotation of the view
point. In fact, the term “lumigraph” that we use to describe the 4D slice of the light field
is borrowed from [9]. Both systems use a cube surrounding the object as the lumigraph
surface. To create a lumigraph from digitized images of a real object, Levoy and Hanra-
han moved the camera in a regular pattern into a known set of positions, and projected
the camera images back to the lumigraph cube. Gortler et al. moved a hand-held video
camera around an object placed on the capture stage. The capture stage is patterned with
a set of concentric circles for estimating the camera pose for each image. The rays from
the images are projected to the lumigraph walls, and the lumigraph is interpolated from
these samples and stored as a grid of 2D images. In both systems, new images are syn-
thesized from a stored grid of 2D images by an interpolation procedure, but Gortler et
al. use additional geometric information to improve on ray interpolation. They create a
rough model from the visual hull of the object. One advantage of the lumigraph methods
is that they allow capturing the appearance of any object regardless of the complexity
of its surface. A disadvantage is the difficulty of storing and accessing the enormous
lumigraph representation.

The “algebraic” approach to image-based rendering using pairs of images and pixel
correspondences in the two images was introduced by Laveau and Faugeras [11]. It has
since been used in several other systems [15, 18, 7]. Given correct dense pixel corre-
spondences one can calculate the 3D coordinates of surface points visible in both im-
ages, and then project these to the image plane of the virtual camera. However, the pro-
jection can also be calculated directly without
3D reconstruction. This is illustrated in Fig. 8
which shows the stored images 1 and 2, and the
image plane of the virtual camera v. Since the
pixel marked in image 1 corresponds to the one
marked in image 2, their associated rays r1 and
r2 are assumed to intersect at the same location
on the object surface. That point projects to the
image v at the intersectionof the epipolar lines e1

1 2

v

r1

e1

e2
r2

Figure 8: Two matching rays correspond to
the pixel of the virtual camera where the projec-
tions of the rays intersect.

and e2, which are the projections of r1 and r2 onto image v. The color of the destination
pixel would be a combination of the colors of the input pixels. The pixel correspondence
mapping between the input images is not easy to do reliably, especially within regions
of homogeneous color. But fortunately, the regions where such pixels project have al-
most constant color, so a projection error of a few pixels typically does not cause visible
artifacts.

Chen and Williams [2] used similar methods to trade unbounded scene complexity to
bounded image complexity. They render a large number of views of a complicated scene
and obtain accurate pixel correspondences from depth values that are stored in addition
to the color at each pixel. The missing views needed for a walk-through of the virtual
environment are interpolated from the stored ones. Max and Ohsaki [14] used similar
techniques for rendering trees from precomputed Z-buffer views. However, rather than
morphing the precomputed images, they reproject them pixel by pixel. Shade et al. [17]
partition the geometric primitives in the scene, render images of them, and texture map
the images onto quadrilaterals, which are displayed instead of the geometry. Debevec
et al. [6] developed a system that fits user-generated geometric models of buildings to

digitized images by interactively associating image features with model features and fit-
ting model parameters to images. The buildings are view-dependently texture mapped
using the color images. The interpolation between different texture maps is improved
by determining more accurate surface geometry using stereo from several input images
and morphing the texture map accordingly.

Two recent papers use similar techniques to ours. Mark et al. [13] investigate the
use of image-based rendering to increase the frame rate for remotely viewing virtual
worlds. Their proposed system would remotely render images from geometric models at
5 frames/sec and send them to a local computer that warps and interpolates two consec-
utive frames at about 60 frames/sec. The 3D warp is done as in [2]. Using the z-values
at each pixel a dense triangle mesh is constructed for the two views between which the
interpolation is performed. Normal vectors and z-values at each pixel are used to locate
false connections across a step edge between an occluding and occluded surface. Darsa
et al. [5] describe another approach for rapidly displaying complicated environments.
The virtual environment is divided into cubes. From the center of each cube, six views
(one for each face of the cube) are rendered. Using the z-buffer, the geometry of the
visible scene is tessellated into a sparse triangle mesh, which is texture mapped using
the rendered color image. A viewer at the center of a cube can simply view the textured
polygon meshes stored at the cube walls. If the viewer moves, parts of the scene pre-
viously hidden become visible. The textured meshes from several cubes can be used to
fill the holes. The authors discuss different weighting schemes for merging meshes from
several cubes.

6 Discussion
We have described a new rendering method called view-based rendering that lies in be-
tween purely model-based and purely image-based methods. The input to our method is
a small set of range and color images, containing both geometric and color information.

An image can be rendered from an arbitrary viewpoint by blending the information
obtained from several of these views. This blending operation is accomplished by three
weights determined by the view direction of the virtual camera, the surface sampling
density and orientation, and the distance from the mesh boundary. As a robust solution
to the visibilityproblem, we propose the use of a soft z-buffering technique to allow only
points within a threshold to be included in blending. We have demonstrated interactive
viewing of two non-trivial real objects using our method.

Our view-based rendering has several advantages over the traditionalmodel-based ap-
proach of rendering full objects. It is much easier to model each view separately than it
is to create a model of the whole object, especially if the object has convoluted geom-
etry. Our approach automatically gives view-dependent texturing of the object, which
produces more realistic images than can typically be obtained by static texturing.

The advantages over image-based rendering are twofold and are a direct consequence
of having explicit geometric information. First, significantly fewer input images are
needed for view-based rendering than for image-based rendering. Second, we can con-
struct composite objects from several view-based models. In contrast, realistic compos-
ite images can be generated from image-based models only if their bounding boxes do
not intersect.

The disadvantage is that our system shows the object in fixed lighting. Relighting of
synthetically created view-based models is possible if we store additional information
such as normals and reflectance properties for each pixel of the texture maps. For real
objects, normals could be approximated but obtaining reflectance properties is not triv-
ial.

References
[1] S. E. Chen. Quicktime VR - an image-basedapproach to virtual environment navigation. In SIGGRAPH

95 Conference Proceedings, pages 29–38. ACM SIGGRAPH, Addison Wesley, August 1995.

[2] S. E. Chen and L. Williams. View interpolation for image synthesis. In Computer Graphics (SIGGRAPH
’93 Proceedings), volume 27, pages 279–288, August 1993.

[3] Y. Chen and G. Medioni. Object modelling by registration of multiple range images. Image and Vision
Computing, 10(3):145–155, April 1992.

[4] B. Curless and M. Levoy. A volumetric method for building complex models from range images. In
SIGGRAPH 96 Conference Proceedings, pages 303–312. ACM SIGGRAPH, Addison Wesley, August
1996.

[5] L. Darsa, B. C. Silva, and A. Varshney. Navigating static environmentsusing image-spacesimplification
and morphing. In Proc. 1997 Symposium on Interactive 3D Graphics, pages 25–34, April 1997.

[6] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and rendering architecture from photographs: A
hybrid geometry- and image-based approach. In SIGGRAPH 96 Conference Proceedings, pages 11–20.
ACM SIGGRAPH, Addison Wesley, August 1996.

[7] T. Evgeniou. Image based rendering using algebraic techniques. Technical Report A.I. Memo No. 1592,
Massachusetts Institute of Technology, 1996.

[8] M. Garland and P. Heckbert. Fast polygonal approximation of terrains and height fields. Technical Re-
port CMU-CS-95-181, Dept. of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1995.

[9] S. J. Gortler, R. Grzeszczuk,R. Szeliski, and M. F. Cohen. The lumigraph. In SIGGRAPH 96 Conference
Proceedings, pages 43–54. ACM SIGGRAPH, Addison Wesley, August 1996.

[10] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh optimization. In Computer
Graphics (SIGGRAPH ’93 Proceedings), volume 27, pages 19–26, August 1993.

[11] S. Laveau and O. D. Faugeras. 3-d scene representation as a collection of images and fundamental ma-
trices. Technical Report RR 2205, INRIA, France, 1994. Available from ftp://ftp.inria.fr/INRIA/tech-
reports/RR/RR-2205.ps.gz.

[12] M. Levoy and P. Hanrahan. Light field rendering. In SIGGRAPH 96 Conference Proceedings, pages
31–42. ACM SIGGRAPH, Addison Wesley, August 1996.

[13] W. R. Mark, L. McMillan, and G. Bishop. Post-rendering 3d warping. In Proc. 1997 Symposium on
Interactive 3D Graphics, pages 7–16, April 1997.

[14] N. Max and K. Ohsaki. Rendering trees from precomputed Z-buffer views. In Eurographics Rendering
Workshop 1995, pages 74–81;359–360. Eurographics, June 1995.

[15] L. McMillan and G. Bishop. Plenoptic modeling: An image-based rendering system. In SIGGRAPH 95
Conference Proceedings, pages 39–46. ACM SIGGRAPH, Addison Wesley, August 1995.

[16] K. Pulli, T. Duchamp, H. Hoppe, J. McDonald, L. Shapiro, and W. Stuetzle. Robust meshes from mul-
tiple range maps. In Proc. IEEE Int. Conf. on Recent Advances in 3-D Digital Imaging and Modeling,
May 1997.

[17] J. Shade, D. Lischinski, D. Salesin, T. DeRose, and J. Snyder. Hierarchical image cachingfor accelerated
walkthroughsof complexenvironments. In SIGGRAPH 96 ConferenceProceedings, pages75–82.ACM
SIGGRAPH, Addison Wesley, August 1996.

[18] T. Werner, R. D. Hersch, and V. Hlavác̆. Rendering real-world objects using view interpolation. In Proc.
IEEE Int. Conf on Computer Vision (ICCV), pages 957–962, June 1995.

(a) (b) (c)

Figure 9 (a) A color image of a toy dog. (b) Weight w� is applied to each face
of the triangular mesh. (c) Weight w� smoothly decreases towards the mesh
boundary.

(a) (b)

Figure 10 (a) The result of combining three views by repeatedly rendering the
view-based meshes from the viewpoint of the virtual camera as described in
Section 3.1. (b) Using the weights and soft z-buffering described in Section 3.2
produces a much better result.

Figure 11 Our viewer shows the three view-based models rendered from the
viewpoint of the virtual camera. The final image is on the bottom right.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

