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Abstract

We present a method for solving the following problem: Given a set of data points scattered in
three dimensions and an initial triangular mesh M0, produce a mesh M , of the same topological
type asM0, that fits the data well and has a small number of vertices. Our approach is to minimize
an energy function that explicitly models the competing desires of conciseness of representation
and fidelity to the data. We show that mesh optimization can be effectively used in at least
two applications: surface reconstruction from unorganized points, and mesh simplification (the
reduction of the number of vertices in an initially dense mesh of triangles).

CR Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling.

Additional Keywords: Geometric Modeling, Surface Fitting, Three-Dimensional Shape Re-
covery, Range Data Analysis, Model Simplification.

1 Introduction

The mesh optimization problem considered in this paper can be roughly stated as follows: Given a
collection of data points X in R3 and an initial triangular mesh M0 near the data, find a mesh M
of the same topological type as M0 that fits the data well and has a small number of vertices.
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Figure 1: Examples of mesh optimization. The meshes in the top row are the initial meshes M0;
the meshes in the bottom row are the corresponding optimized meshes. The first 3 columns are
reconstructions; the last 2 columns are simplifications.

As an example, Figure 11b shows a set of 4102 data points sampled from the object shown in
Figure 11a. The input to the mesh optimization algorithm consists of the points together with the
initial mesh shown in Figure 11c. The optimized mesh is shown in Figure 12c. Notice that the
sharp edges and corners indicated by the data have been faithfully recovered and that the number
of vertices has been significantly reduced (from 1572 to 163).

To solve the mesh optimization problem we minimize an energy function that captures the com-
peting desires of tight geometric fit and compact representation. The tradeoff between geometric
fit and compact representation is controlled via a user-selectable parameter crep. A large value of
crep indicates that a sparse representation is to be strongly preferred over a dense one, usually at
the expense of degrading the fit.

We use the input mesh M0 as a starting point for a non-linear optimization process. During
the optimization we vary the number of vertices, their positions, and their connectivity. Although
we can give no guarantee of finding a global minimum, we have run the method on a wide variety
of data sets; the method has produced good results in all cases (see Figure 1).

We see at least two applications of mesh optimization: surface reconstruction and mesh simpli-
fication.

The problem of surface reconstruction from sampled data occurs in many scientific and engi-
neering applications. In [2], we outlined a two phase procedure for reconstructing a surface from a
set of unorganized data points. The goal of phase one is to determine the topological type of the
unknown surface and to obtain a crude estimate of its geometry. An algorithm for phase one was
described in [5]. The goal of phase two is to improve the fit and reduce the number of faces. Mesh
optimization can be used for this purpose.

Although we were originally led to consider the mesh optimization problem by our research
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on surface reconstruction, the algorithm we have developed can also be applied to the problem of
mesh simplification. Mesh simplification, as considered by Turk [16] and Schroeder et al. [11], refers
to the problem of reducing the number of faces in a dense mesh while minimally perturbing the
shape. Mesh optimization can be used to solve this problem as follows: sample data points X from
the initial mesh and use the initial mesh as the starting point M0 of the optimization procedure.
For instance, Figure 14a shows a triangular approximation of a minimal surface with 2032 vertices.
Application of our mesh optimization algorithm to a sample of 6752 points (Figure 14b) from this
mesh produces the meshes shown in Figures 14c (487 vertices) and 14d (239 vertices). The mesh
of Figure 14c corresponds to a relatively small value of crep, and therefore has more vertices than
the mesh of Figure 14d which corresponds to a somewhat larger value of crep.

The principal contributions of this paper are:

• It presents an algorithm for fitting a mesh of arbitrary topological type to a set of data points
(as opposed to volume data, etc.). During the fitting process, the number and connectivity
of the vertices, as well as their positions, are allowed to vary.

• It casts mesh simplification as an optimization problem with an energy function that directly
measures deviation of the final mesh from the original. As a consequence, the final mesh
naturally adapts to curvature variations in the original mesh.

• It demonstrates how the algorithm’s ability to recover sharp edges and corners can be ex-
ploited to automatically segment the final mesh into smooth connected components (see
Figure 12e).

2 Mesh Representation

Intuitively, a mesh is a piecewise linear surface, consisting of triangular faces pasted together along
their edges. For our purposes it is important to maintain the distinction between the connectivity
of the vertices and their geometric positions. Formally, a mesh M is a pair (K,V ), where: K is a
simplicial complex representing the connectivity of the vertices, edges, and faces, thus determining
the topological type of the mesh; V = {v1, . . . ,vm}, vi ∈ R3 is a set of vertex positions defining
the shape of the mesh in R3 (its geometric realization).

A simplicial complex K consists of a set of vertices {1, . . . ,m}, together with a set of non-empty
subsets of the vertices, called the simplices of K, such that any set consisting of exactly one vertex
is a simplex in K, and every non-empty subset of a simplex in K is again a simplex in K (cf.
Spanier [15]). The 0-simplices {i} ∈ K are called vertices, the 1-simplices {i, j} ∈ K are called
edges, and the 2-simplices {i, j, k} ∈ K are called faces.

A geometric realization of a mesh as a surface in R3 can be obtained as follows. For a given sim-
plicial complex K, form its topological realization |K| in Rm by identifying the vertices {1, . . . ,m}
with the standard basis vectors {e1, . . . , em} of Rm. For each simplex s ∈ K let |s| denote the
convex hull of its vertices in Rm, and let |K| = ∪s∈K |s|. Let φ : Rm → R3 be the linear map that
sends the i-th standard basis vector ei ∈ Rm to vi ∈ R3 (see Figure 2).
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Figure 2: Example of mesh representation: a mesh consisting of a single face.

The geometric realization ofM is the image φV (|K|), where we write the map as φV to emphasize
that it is fully specified by the set of vertex positions V = {v1, . . . ,vm}. The map φV is called
an embedding if it is 1-1, that is if φV (|K|) is not self-intersecting. Only a restricted set of vertex
positions V result in φV being an embedding.

If φV is an embedding, any point p ∈ φV (|K|) can be parameterized by finding its unique
pre-image on |K|. The vector b ∈ |K| with p = φV (b) is called the barycentric coordinate vector of
p (with respect to the simplicial complex K). Note that barycentric coordinate vectors are convex
combinations of standard basis vectors ei ∈ Rm corresponding to the vertices of a face of K. Any
barycentric coordinate vector has at most three non-zero entries; it has only two non-zero entries
if it lies on an edge of |K|, and only one if it is a vertex.

3 Definition of the Energy Function

Recall that the goal of mesh optimization is to obtain a mesh that provides a good fit to the point
set X and has a small number of vertices. We find a simplicial complex K and a set of vertex
positions V defining a mesh M = (K,V ) that minimizes the energy function

E(K,V ) = Edist(K,V ) + Erep(K) +Espring(K,V ).

The first two terms correspond to the two stated goals; the third term is motivated below.

The distance energy Edist is equal to the sum of squared distances from the points X =
{x1, . . . ,xn} to the mesh,

Edist(K,V ) =
n∑

i=1

d2(xi, φV (|K|)).
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The representation energy Erep penalizes meshes with a large number of vertices. It is set to
be proportional to the number of vertices m of K:

Erep(K) = crepm.

The optimization allows vertices to be both added to and removed from the mesh. When a vertex
is added, the distance energy Edist is likely to be reduced; the term Erep makes this operation incur
a penalty so that vertices are not added indefinitely. Similarly, one wants to remove vertices from
a dense mesh even if Edist increases slightly; in this case Erep acts to encourage the vertex removal.
The user-specified parameter crep provides a controllable trade-off between fidelity of geometric fit
and parsimony of representation.

We discovered, as others have before us [7], that minimizing Edist +Erep does not produce the
desired results. As an illustration of what can go wrong, Figure 11d shows the result of minimizing
Edist alone. The estimated surface has several spikes in regions where there is no data. These spikes
are a manifestation of the fundamental problem that a minimum of Edist + Erep may not exist.

To guarantee the existence of a minimum (see Appendix A.1), we add the third term, the spring
energy Espring. It places on each edge of the mesh a spring of rest length zero and spring constant
κ:

Espring(K,V ) =
∑

{j,k}∈K

κ‖vj − vk‖2

It is worthwhile emphasizing that the spring energy is not a smoothness penalty. Our intent
is not to penalize sharp dihedral angles in the mesh, since such features may be present in the
underlying surface and should be recovered. We view Espring as a regularizing term that helps guide
the optimization to a desirable local minimum. As the optimization converges to the solution, the
magnitude of Espring can be gradually reduced. We return to this issue in Section 4.4.

For some applications we want the procedure to be scale-invariant, which is equivalent to defining
a unitless energy function E. To achieve invariance under Euclidean motion and uniform scaling, the
points X and the initial meshM0 are pre-scaled uniformly to fit in a unit cube. After optimization,
a post-processing step can undo this initial transformation.

4 Minimization of the Energy Function

Our goal is to minimize the energy function

E(K,V ) = Edist(K,V ) + Erep(K) + Espring(K,V )

over the set K of simplicial complexes K homeomorphic to the initial simplicial complex K0, and
the vertex positions V defining the embedding. We now present an outline of our optimization
algorithm, a pseudo-code version of which appears in Figure 3. The details are deferred to the next
two subsections.

To minimize E(K,V ) over bothK and V , we partition the problem into two nested subproblems:
an inner minimization over V for fixed simplicial complex K, and an outer minimization over K.
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In Section 4.1 we describe an algorithm that solves the inner minimization problem. It finds
E(K) = minV E(K,V ), the energy of the best possible embedding of the fixed simplicial complex
K, and the corresponding vertex positions V , given an initial guess for V . This corresponds to the
procedure OptimizeVertexPositions in Figure 3.

Whereas the inner minimization is a continuous optimization problem, the outer minimization
of E(K) over the simplicial complexes K ∈ K (procedure OptimizeMesh) is a discrete optimization
problem. An algorithm for its solution is presented in Section 4.2.

The energy function E(K,V ) depends on two parameters crep and κ. The parameter crep

controls the tradeoff between conciseness and fidelity to the data and should be set by the user.
The parameter κ, on the other hand, is a regularizing parameter that, ideally, would be chosen
automatically. Our method of setting κ is described in Section 4.4.

4.1 Optimization for Fixed Simplicial Complex
(Procedure OptimizeVertexPositions)

In this section, we consider the problem of finding a set of vertex positions V that minimizes the
energy function E(K,V ) for a given simplicial complex K. As Erep(K) does not depend on V , this
amounts to minimizing Edist(K,V ) + Espring(K,V ).

To evaluate the distance energy Edist(K,V ), it is necessary to compute the distance of each
data point xi to M = φV (|K|). Each of these distances is itself the solution to the minimization
problem

d2(xi, φV (|K|)) = min
bi∈|K|

‖xi − φV (bi)‖2,

in which the unknown is the barycentric coordinate vector bi ∈ |K| ⊂ Rm of the projection of xi

onto M (Figure 4). Thus, minimizing E(K,V ) for fixed K is equivalent to minimizing the new
objective function

E(K,V,B) =
n∑

i=1

‖xi − φV (bi)‖2 + Espring(K,V )

=
n∑

i=1

‖xi − φV (bi)‖2 +
∑

{j,k}∈K

κ‖vj − vk‖2

over the vertex positions V = {v1, . . . ,vm},vi ∈ R3 and the barycentric coordinates B = {b1, . . . ,bn},bi ∈
|K| ⊂ Rm.

To solve this optimization problem (procedure OptimizeVertexPositions), our method alternates
between two subproblems:

1. For fixed vertex positions V , find optimal barycentric coordinate vectors B by projection
(procedure ProjectPoints).

2. For fixed barycentric coordinate vectors B, find optimal vertex positions V by solving a linear
least squares problem (procedure ImproveVertexPositions).
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OptimizeMesh(K0,V0) {
K := K0

V := OptimizeVertexPositions(K0,V0)

– Solve the outer minimization problem.
repeat {

(K ′,V ′) := GenerateLegalMove(K,V )
V ′ = OptimizeVertexPositions(K ′,V ′)
if E(K ′, V ′) < E(K,V ) then

(K,V ) := (K ′,V ′)
endif

} until convergence
return (K,V )

}
– Solve the inner optimization problem
– E(K) = minV E(K,V )
– for fixed simplicial complex K.
OptimizeVertexPositions(K,V ) {

repeat {
– Compute barycentric coordinates by projection.
B := ProjectPoints(K,V )
– Minimize E(K,V,B) over V using conjugate gradients.
V := ImproveVertexPositions(K,B)

} until convergence
return V

}
GenerateLegalMove(K,V ) {

Select a legal move K ⇒ K ′.
Locally modify V to obtain V ′ appropriate for K ′.
return (K ′,V ′)

}

Figure 3: An idealized pseudo-code version of the minimization algorithm.
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Figure 4: Distance of a point xi from the mesh.

Because we find optimal solutions to both of these subproblems, E(K,V,B) can never increase,
and since it is bounded from below, it must converge. In principle, one could iterate until some
formal convergence criterion is met. Instead, as is common, we perform a fixed number of iterations.
As an example, Figure 11e shows the result of optimizing the mesh of Figure 11c over the vertex
positions while holding the simplicial complex fixed.

It is conceivable that procedure OptimizeVertexPositions returns a set V of vertices for which the
mesh is self-intersecting, i.e. φV is not an embedding. While it is possible to check a posteri-
ori whether φV is an embedding, constraining the optimization to always produce an embedding
appears to be difficult. This has not presented a problem in the examples we have run.

4.1.1 Projection Subproblem
(Procedure ProjectPoints)

The problem of optimizing E(K,V,B) over the barycentric coordinate vectors B = {b1, . . . ,bn},
while holding the vertex positions V = {v1, . . . ,vm} and the simplicial complex K constant, de-
composes into n separate optimization problems:

bi = argmin
b∈|K|

‖xi − φV (b)‖

In other words, bi is the barycentric coordinate vector corresponding to the point p ∈ φV (|K|)
closest to xi.

A naive approach to computing bi is to project xi onto all of the faces of M , and then find the
projection with minimal distance. To speed up the projection, we first enter the faces of the mesh
into a spatial partitioning data structure (similar to the one used in [17]). Then for each point xi

only a nearby subset of the faces needs to be considered, and the projection step takes expected
time O(n). For additional speedup we exploit coherence between iterations. Instead of projecting
each point globally onto the mesh, we assume that a point’s projection lies in a neighborhood of
its projection in the previous iteration. Specifically, we project the point onto all faces that share
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a vertex with the previous face. Although this is a heuristic that can fail, it has performed well in
practice.

4.1.2 Linear Least Squares Subproblem
(Procedure ImproveVertexPositions)

Minimizing E(K,V,B) over the vertex positions V while holding B and K fixed is a linear least
squares problem. It decomposes into three independent subproblems, one for each of the three
coordinates of the vertex positions. We will write down the problem for the first coordinate.

Let e be the number of edges (1-simplices) in K; note that e is O(m). Let v1 be the m-
vector whose i-th element is the first coordinate of vi. Let d1 be the (n + e)-vector whose first n
elements are the first coordinates of the data points xi, and whose last e elements are zero. With
these definitions we can express the least squares problem for the first coordinate as minimizing
‖Av1 −d1‖2 over v1. The design matrix A is an (n+ e)×m matrix of scalars. The first n rows of
A are the barycentric coordinate vectors bi. Each of the trailing e rows contains 2 non-zero entries
with values

√
κ and −√

κ in the columns corresponding to the indices of the edge’s endpoints.
The first n rows of the least squares problem correspond to Edist(K,V ), while the last e rows
correspond to Espring(K,V ). An important feature of the matrix A is that it contains at most 3
non-zero entries in each row, for a total of O(n+m) non-zero entries.

To solve the least squares problem, we use the conjugate gradient method (cf. [3]). This is an
iterative method guaranteed to find the exact solution in as many iterations as there are distinct
singular values of A, i.e. in at most m iterations. Usually far fewer iterations are required to get
a result with acceptable precision. For example, we find that for m as large as 104, as few as 200
iterations are sufficient.

The two time-consuming operations in each iteration of the conjugate gradient algorithm are
the multiplication of A by an (n+ e)-vector and the multiplication of AT by an m-vector. Because
A is sparse, these two operations can be executed in O(n+m) time. We store A in a sparse form
that requires only O(n + m) space. Thus, an acceptable solution to the least squares problem
is obtained in O(n + m) time. In contrast, a typical noniterative method for solving dense least
squares problems, such as QR decomposition, would require O((n +m)m2) time to find an exact
solution.

4.2 Optimization over Simplicial Complexes
(Procedure OptimizeMesh)

To solve the outer minimization problem, minimizing E(K) over K, we define a set of three ele-
mentary transformations, edge collapse, edge split, and edge swap, taking a simplicial complex K
to another simplicial complex K ′ (see Figure 5).

We define a legal move to be the application of one of these elementary transformations to an
edge of K that leaves the topological type of K unchanged. The set of elementary transformations
is complete in the sense that any simplicial complex in K can be obtained from K0 through a
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Figure 5: Local simplicial complex transformations

sequence of legal moves1.

Our goal then is to find such a sequence taking us from K0 to a minimum of E(K). We do this
using a variant of random descent: we randomly select a legal move, K ⇒ K ′. If E(K ′) < E(K), we
accept the move, otherwise we try again. If a large number of trials fails to produce an acceptable
move, we terminate the search.

More elaborate selection strategies, such as steepest descent or simulated annealing, are possible.
As we have obtained good results with the simple strategy of random descent, we have not yet
implemented the other strategies.

Identifying Legal Moves An edge split transformation is always a legal move, as it can never
change the topological type of K. The other two transformations, on the other hand, can cause a
change of topological type, so tests must be performed to determine if they are legal moves.

We define an edge {i, j} ∈ K to be a boundary edge if it is a subset of only one face {i, j, k} ∈ K,
and a vertex {i} to be a boundary vertex if there exists a boundary edge {i, j} ∈ K.

An edge collapse transformation K ⇒ K ′ that collapses the edge {i, j} ∈ K is a legal move if
and only if the following conditions are satisfied (proof in Appendix A.2):

• For all vertices {k} adjacent to both {i} and {j} ({i, k} ∈ K and {j, k} ∈ K), {i, j, k} is a
face of K.

• If {i} and {j} are both boundary vertices, {i, j} is a boundary edge.

• K has more than 4 vertices if neither {i} nor {j} are boundary vertices, or K has more than
3 vertices if either {i} or {j} are boundary vertices.

1In fact, we prove in Appendix A.3 that edge collapse and edge split are sufficient; we include edge swap to allow
the optimization procedure to “tunnel” through small hills in the energy function.
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An edge swap transformation K ⇒ K ′ that replaces the edge {i, j} ∈ K with {k, l} ∈ K ′ is a
legal move if and only if {k, l} �∈ K.

4.3 Exploiting Locality

The idealized algorithm described so far is too inefficient to be of practical use. In this section, we
describe some heuristics which dramatically reduce the running time. These heuristics capitalize
on the fact that a local change in the structure of the mesh leaves the optimal positions of distant
vertices essentially unchanged.

4.3.1 Heuristics for Evaluating the Effect of Legal Moves

Our strategy for selecting legal moves requires evaluation of E(K ′) = minV E(K ′, V ) for a simplicial
complex K ′ obtained from K through a legal move. Ideally, we would use procedure OptimizeVer-

texPositions of Section 4.1 for this purpose, as indicated in Figure 3. In practice, however, this is
too slow. Instead, we use fast local heuristics to estimate the effect of a legal move on the energy
function.

Each of the heuristics is based on extracting a submesh in the neighborhood of the transforma-
tion, along with the subset of the data points projecting onto the submesh. The change in overall
energy is estimated by only considering the contribution of the submesh and the corresponding
point set. This estimate is always pessimistic, as full optimization would only further reduce the
energy. Therefore, the heuristics never suggest changes that will increase the true energy of the
mesh.

Definition of neighborhoods in a simplicial complex To refer to neighborhoods in a simpli-
cial complex, we need to introduce some further notation. We write s′ ≤ s to denote that simplex
s′ is a non-empty subset of simplex s. For simplex s ∈ K (Figure 6):

star(s;K) = {s′ ∈ K : s ≤ s′}
star(s;K) = {s′ ∈ K : ∃t ∈ star(s;K) : s′ ≤ t}
link(s;K) = star(s;K) \ star(s;K).

Evaluation of Edge Collapse To evaluate a transformation K ⇒ K ′ collapsing an edge {i, j}
into a single vertex {h} (Figure 5), we take the submesh to be star({i};K) ∪ star({j};K), and
optimize over the single vertex position vh while holding all other vertex positions constant.

Because we perform only a small number of iterations (for reasons of efficiency), the initial choice
of vh greatly influences the accuracy of the result. Therefore, we attempt three optimizations, with
vh starting at vi, vj , and 1

2 (vi + vj), and accept the best one.
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Figure 6: Neighborhood subsets of K.
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The edge collapse should be allowed only if the new mesh does not intersect itself. Checking for
this would be costly; instead we settle for a less expensive heuristic check. If, after the local opti-
mization, the maximum dihedral angle of the edges in star({h};K ′) is greater than some threshold,
the edge collapse is rejected.

Evaluation of Edge Split The procedure is the same as for edge collapse, except that the
submesh is defined to be star({i, j};K), and the initial value of the new vertex vh is chosen to be
1
2(vi + vj).

Evaluation of Edge Swap To evaluate an edge swap transformation K ⇒ K ′ that replaces
an edge {i, j} ∈ K with {k, l} ∈ K ′, we consider two local optimizations, one with submesh
star({k};K ′), varying vertex vk, and one with submesh star({l};K ′), varying vertex vl (Figure 7).
The change in energy is taken to best of these. As is the case in evaluating an edge collapse, we
reject the transformation if the maximum dihedral angle after the local optimization exceeds a
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threshold.

4.3.2 Legal Move Selection Strategy
(Procedure GenerateLegalMove)

The simple strategy for selecting legal moves described in Section 4.2 can be improved by exploiting
locality. Instead of selecting edges completely at random, edges are selected from a candidate set.
This candidate set consists of all edges that may lead to beneficial moves, and initially contains all
edges.

To generate a legal move, we randomly remove an edge from the candidate set. We first
consider collapsing the edge, accepting the move if it is legal and reduces the total energy. If the
edge collapse is not accepted, we then consider edge swap and edge split in that order. If one of
the transformations is accepted, we update the candidate set by adding all neighboring edges. The
candidate set becomes very useful toward the end of optimization, when the fraction of beneficial
moves diminishes.

4.4 Setting of the Spring Constant

We view the spring energy Espring as a regularizing term that helps guide the optimization process
to a good minimum. The spring constant κ determines the contribution of this term to the total
energy. We have obtained good results by making successive calls to procedure OptimizeMesh, each
with a different value of κ, according to a schedule that gradually decreases κ.

As an example, to obtain the final mesh in Figure 12c starting from the mesh in Figure 11c,
we successively set κ to 10−2, 10−3, 10−4, and 10−8 (see Figures 11f–12c). This same schedule was
used in all the examples.

5 Results

5.1 Surface Reconstruction

From the set of points shown in Figure 11b, phase one of our reconstruction algorithm [5] produces
the mesh shown in Figure 11c; this mesh has the correct topological type, but it is rather dense, is
far away from the data, and lacks the sharp features of the original model (Figure 11a). Using this
mesh as a starting point, mesh optimization produces the mesh in Figure 12c.

Figures 13a-13f show two examples of surface reconstruction from actual laser range data (cour-
tesy of Technical Arts, Redmond, WA). Figures 13a and 13b show sets of points obtained by sam-
pling two physical objects (a distributor cap and a golf club head) with a laser range finder. The
outputs of phase one are shown in Figures 13c and 13d. The holes present in the surface of Fig-
ure 13c are artifacts of the data, as self-shadowing prevented some regions of the surface from being
scanned. Adaptive selection of scanning paths preventing such shadowing is an interesting area of
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future research. In this case, we manually filled the holes, leaving a single boundary at the bottom.
Figures 13e and 13f show the optimized meshes obtained with our algorithm.

5.2 Mesh Simplification

For mesh simplification, we first sample a set of points randomly from the original mesh using
uniform random sampling over area. Next, we add the vertices of the mesh to this point set.
Finally, to more faithfully preserve the boundaries of the mesh, we sample additional points from
boundary edges.

As an example of mesh simplification, we start with the mesh containing 2032 vertices shown in
Figure 14a. From it, we obtain a sample of 6752 points shown in Figure 14b (4000 random points,
2032 vertex points, and 720 boundary points). Mesh optimization, with crep = 10−5, reduces the
mesh down to 487 vertices (Figure 14c). By setting crep = 10−4, we obtain a coarser mesh of 239
vertices (Figure 14d).

As these examples illustrate, basing mesh simplification on a measure of distance between the
simplified mesh and the original has a number of benefits:

• Vertices are dense in regions of high Gaussian curvature, whereas a few large faces span the
flat regions.

• Long edges are aligned in directions of low curvature, and the aspect ratios of the triangles
adjust to local curvature.

• Edges and vertices of the simplified mesh are placed near sharp features of the original mesh.

5.3 Segmentation

Mesh optimization enables us to detect sharp features in the underlying surface. Using a simple
thresholding method, the optimized mesh can be segmented into smooth components. To this end,
we build a graph in which the nodes are the faces of mesh. Two nodes of this graph are connected if
the two corresponding faces are adjacent and their dihedral angle is smaller than a given threshold.
The connected components of this graph identify the desired smooth segments. As an example,
Figure 12e shows the segmentation of the optimized mesh into 11 components. After segmentation,
vertex normals can be estimated from neighboring faces within each component, and a smoothly
shaded surface can be created (Figure 12f).

5.4 Parameter Settings and Performance Statistics

Table 1 lists the specific parameter values of crep and κ used to generate the meshes in the examples,
along with other performance statistics. In all these examples, the table entry “varied” refers to
a spring constant schedule of {10−2, 10−3, 10−4, 10−8}. In fact, all meshes in Figure 1 are also
created using the same parameters (except that crep was changed in two cases). Execution times
were obtained on a DEC uniprocessor Alpha workstation.
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Fig. #vertices #faces #data Parameters Resulting energies time
m n crep κ Edist E (min.)

11c 1572 3152 4102 - - 8.57×10−2 - -
11e 1572 3152 4102 10−5 10−2 8.04×10−4 4.84×10−2 1.5
11f 508 1024 4102 10−5 10−2 6.84×10−4 3.62×10−2 (+3.0)
12a 270 548 4102 10−5 10−3 6.08×10−4 6.94×10−3 (+2.2)
12c 163 334 4102 10−5 10{−2,−3,−4,−8} 4.86×10−4 2.12×10−3 17.0
13c 9220 18272 12745 - - 6.41×10−2 - -
13e 690 1348 12745 10−5 10{−2,−3,−4,−8} 4.23×10−3 1.18×10−2 47.0
13d 4059 8073 16864 - - 2.20×10−2 - -
13f 262 515 16864 10−5 10{−2,−3,−4,−8} 2.19×10−3 4.95×10−3 44.5
14a 2032 3832 - - - - - -
14c 487 916 6752 10−5 10{−2,−3,−4,−8} 1.86×10−3 8.05×10−3 9.9
14d 239 432 6752 10−4 10{−2,−3,−4,−8} 9.19×10−3 4.39×10−2 10.2

Table 1: Performance statistics for meshes shown in Figure 11.

6 Related Work

Surface Fitting There is a large body of literature on fitting embeddings of a rectangular domain;
see Bolle and Vemuri [1] for a review. Schudy and Ballard [12, 13] fit embeddings of a sphere to
point data. Goshtasby [4] works with embeddings of cylinders and tori. Sclaroff and Pentland [14]
consider embeddings of a deformed superquadric. Miller et al. [8] approximate an isosurface of
volume data by fitting a mesh homeomorphic to a sphere. While it appears that their method
could be extended to finding isosurfaces of arbitrary topological type, it it less obvious how it could
be modified to handle point instead of volume data. Mallet [6] discusses interpolation of functions
over simplicial complexes of arbitrary topological type.

Our method allows fitting of a parametric surface of arbitrary topological type to a set of three-
dimensional points. In [2], we sketched an algorithm for fitting a mesh of fixed vertex connectivity
to the data. The algorithm presented here is an extension of this idea in which we also allow the
number of vertices and their connectivity to vary. To the best of our knowledge, this has not been
done before.

Mesh Simplification Two notable papers discussing the mesh simplification problem are Schroeder
et al. [11] and Turk [16].

The motivation of Schroeder et al. is to simplify meshes generated by “marching cubes” that
may consist of more than a million triangles. In their iterative approach, the basic operation is
removal of a vertex and re-triangulation of the hole thus created. The criterion for vertex removal in
the simplest case (interior vertex not on edge or corner) is the distance from the vertex to the plane
approximating its surrounding vertices. It is worthwhile noting that this criterion only considers
deviation of the new mesh from the mesh created in the previous iteration; deviation from the
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original mesh does not figure in the strategy.

Turk’s goal is to reduce the amount of detail in a mesh while remaining faithful to the original
topology and geometry. His basic idea is to distribute points on the existing mesh that are to
become the new vertices. He then creates a triangulation containing both old and new vertices,
and finally removes the old vertices. The density of the new vertices is chosen to be higher in areas
of high curvature.

The principal advantage of our mesh simplification method compared to the techniques men-
tioned above is that we cast mesh simplification as an optimization problem: we find a new mesh of
lower complexity that is as close as possible to the original mesh. This is recognized as a desirable
property by Turk (Section 8, p. 63): “Another topic is finding measures of how closely matched a
given re-tiling is to the original model. Can such a quality measure be used to guide the re-tiling
process?”. Optimization automatically retains more vertices in areas of high curvature, and leads to
faces that are elongated along directions of low curvature, another property recognized as desirable
by Turk.

7 Summary and Future Work

We have described an energy minimization approach to solving the mesh optimization problem.
The energy function we use consists of three terms: a distance energy that measures the closeness of
fit, a representation energy that penalizes meshes with a large number of vertices, and a regularizing
term that conceptually places springs of rest length zero on the edges of the mesh. Our minimization
algorithm partitions the problem into two nested subproblems: an inner continuous minimization
and an outer discrete minimization. The search space consists of all meshes homeomorphic to the
starting mesh.

Mesh optimization has proven effective as the second phase of our method for surface recon-
struction from unorganized points, as discussed in [5]. (Phase two is responsible for improving the
geometric fit and reducing the number of vertices of the mesh produced in phase one.)

Our method has also performed well for mesh simplification, that is, the reduction of the number
of vertices in a dense triangular mesh. It produces meshes whose edges align themselves along
directions of low curvature, and whose vertices concentrate in areas of high Gaussian curvature.
Because the energy does not penalize surfaces with sharp dihedral angles, the method can recover
sharp edges and corners.

A number of areas of future research still remain, including:

• Investigate the use of more sophisticated optimization methods, such as simulated annealing
for discrete optimization and quadratic methods for non-linear least squares optimization, in
order to avoid undesirable local minima in the energy and to accelerate convergence.

• Gain more insight into the use of the spring energy as a regularizing term, especially in the
presence of appreciable noise.

• Improve the speed of the algorithm and investigate implementations on parallel architectures.
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• Develop methods for fitting higher order splines to more accurately and concisely model
curved surfaces.

• Experiment with sparse, non-uniform, and noisy data.

• Extend the current algorithm to other distance measures such as maximum error (L∞ norm)
or average error (L1 norm), instead of the current L2 norm.

A Mathematical Appendix

In this appendix, we address some mathematical issues alluded to in the body of the paper. Sec-
tion A.1 contains a proof that there is a mesh (Kmin, Vmin) at which the absolute minimum of the
energy function is attained. In Section A.2, it is shown that the simplicial operations introduced
in Section 4.2 are complete in the sense that they may be used to generate all triangulations of
topological surfaces. In Section A.3, we prove the necessity and sufficiency of the criteria for legality
of an edge collapse given in Section 4.2

A.1 Absolute Minima for the Energy Functional Can be Attained

Recall that one of the reasons for adding the spring energy term Espring to the energy functions
was to insure the existence of a mesh realizing a minimum. In this appendix, we prove that this is
the case.

To see what is involved, let e ≥ 0 be the absolute minimum of E and let Kk, Vk) be a sequence
of meshes with limk→∞E(Kk, Vk) = e. Without the spring energy term, it is possible to construct
examples in which the vertex configuration Vk becomes unbounded as k approaches infinity.

This cannot happen if the spring energy term is included. We will show that for sufficiently
large V the energy functional E(K,V ) is bounded from below by a multiple of the square of the
Euclidean norm of V . Consequently, the minimizing sequence (Kk, Vk) is contained in a finite ball
and must, therefore, contain a subsequence converging to a mesh (Kmin, Vmin). By construction
E(Kmin, Vmin) = e.

Theorem 1 There is a mesh (Kmin, Vmin) with the property that

E(K,V ) ≥ E(Kmin, Vmin)

for every mesh (K,V ).

Remark 1 It is important to note here that the map φVmin : |Kmin| → R3 may not be an embed-
ding. In general, the minimum of E may be attained by a degenerate mapping whose image may
not be an embedded manifold.

We proceed now with the technicalities of the formal proof.
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Recall that for a mesh (K,V ) and a data set X, n is the number of data points and m is the
number of vertices of K. Assume that X is contained in a ball of radius r > 0 centered at the
origin. If V = (v1,v2, . . . ,vm) is viewed as a vector in R3m then its Euclidean norm on R3m is
given by the formula

‖V ‖ =
√√√√ m∑

i=1

‖vi‖2

where ‖vi‖ is the standard Euclidean norm of R3.

Lemma 1 Suppose that ‖V ‖ ≥ 4
√
mr. Then

E(K,V ) ≥ min
(
4κ
m2

, 1
) ‖V ‖2

16
+ crep m

Proof. Recall that

E(K,V ) = Espring(K,V ) + Edist(K,V ) + Erep(K) .

Let b = maxj ‖vj‖ and a = minj ‖vj‖. Notice that b satisfies the inequality

b ≥ ‖V ‖√
m

.

There are two cases to consider: a ≤ b/2 or a > b/2.

Suppose that a ≤ b/2. Choose vmax and vmin in {v1, . . . ,vm} such that a = ‖vmin‖ and
b = ‖vmax‖. There is a sequence of k ≤ m edges of K connecting vmax to vmin. The spring energy
of these connecting edges is easily shown to be greater than κk(b− a)2/k2. Since

k

(
b− a

k

)2

≥ (b− a)2

m
≥ b2

4m
≥ ‖V ‖2

4m2
,

the inequality
Espring(K,V ) ≥ κ

4m2
‖V ‖2

holds when a < b/2.

Now suppose that a > b/2. Then for all xi ∈ X,

dist2 (xi, φV (|K|)) ≥ (a− r)2 ≥
(
b

2
− r

)2

≥
( ‖V ‖
2
√
m

− r

)2

≥
( ‖V ‖
2
√
m

− ‖V ‖
4
√
m

)2

=
‖V ‖2

16m
.

Hence,

Edist(K,V ) =
n∑

i=1

dist2 (xi, φV (|K|)) ≥ 1
16

‖V ‖2 .

Consequently, if ‖V ‖ ≥ 4
√
mr then

Espring(K,V ) + Edist(K,V ) ≥ min
(
1
4
,
κ

m2

) ‖V ‖2

4
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from which the inequality in the statement of the lemma follows. Q.E.D.

The next lemma is an immediate consequence of Lemma 1 and the definition of the energy
functional.

Lemma 2 Let b = E(K0, V0) where (K0, V0) is a mesh. Suppose that (K,V ) is another mesh such
that E(K,V ) ≤ b and let m be the number of vertices of K. Then

• m ≤ b/crep.

• ‖V ‖ ≤ 4max

(√
mr,

√
b

min(4κ/m2, 1)

)
≤ 4max

(√
b

crep
r,

√
b

min(4κc2rep/b
2, 1)

)
.

Proof. (of Theorem 1) Choose a sequence of meshes (Kk, Vk) with lim
k→∞

E(Kk, Vk) = e.

Let mk be the number of vertices of Kk. First note that since E(Kk, Vk) ≥ crep mk, the number
of vertices in Kk is bounded by an integer M . But there are only a finite number of simplicial
complexes with at most M vertices. Consequently, we may choose a subsequence kj′ with Kkj′ =
Kkj′+1

for all j′ and with limj′→∞E(Kkj′ , Vkj′ ) = e. Let Kmin denote such a complex.

By Lemma 2 the vectors Vkj′ all lie within a ball of finite radius. By compactness, there is a
subsequence of Vkj′ which converges to a vector Vmin. The mesh (Kmin, Vmin) satisfies the condition
of the theorem. Q.E.D.

A.2 Completeness of Operations

We want to show that the operations of edge split, edge swap and edge collapse form a complete
set in the sense that if K and L are simplicial surfaces with homeomorphic topological realizations
then L can be obtained from K by a finite sequence of edge splits, edge swaps and edge collapses.

Although edge swaps have proved useful in our optimization procedure, the next proposition
shows that they are not needed to prove completeness.

Proposition 1 An edge swap is equivalent to an edge split followed by an edge collapse.

Proof. Let T1 = {v1, v2, v3} and T2 = {v1, v2, v4} be two triangles of a simplicial surface K with
common edge e = {v1, v2}. An edge swap along e, modifies K to give a new complex K ′ obtained
by replacing e with the edge e′ = {v3, v4} and T1 and T2 with the new triangles T ′

1 = {v1, v3, v4}
and T ′

2 = {v2, v3, v4} This is equivalent to performing an edge split along e followed by an edge
collapse (see Figure 8). Q.E.D.

Theorem 2 (Completeness) Let K and L be two simplicial surfaces such that |K| and |L| are
homeomorphic. Then L is isomorphic to a simplicial complex obtained from K by a finite sequence
of edge collapses and edge splits.
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(a) (b) (c) (d)
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Figure 8: An Edge swap is equivalent to an edge split followed by an edge collapse.

To facilitate the proof of the theorem, we review of some basic facts about simplicial complexes
(see [10]). Recall that a simplicial surface K is a finite simplicial complex whose topological
realization |K| is homeomorphic to a compact 2-dimensional manifold, possibly with boundary. If
M is a compact topological surface, a triangulation of M is a simplicial surface K, together with
a homeomorphism from |K| to M .

A subdivision of K, written K ′"K, is a simplicial complex K ′, together with a homeomorphism,
φ : |K ′| → |K|, which is affine linear on |σ| for each simplex σ ∈ K ′. Thus, the vertices of K ′ can
be identified with points of |K| and K ′ induces a triangulation of each each 2-simplex of |K|.

If K and L are two simplicial surfaces, a simplicial map, φ : K → L is a map from the set of
vertices of K to the set of vertices of K, such that if σ = {v0, v1, . . . , vk} is a k-simplex of K then
φ(σ) = {φ(v0), φ(v1), . . . , φ(vk)} is contained in a simplex of L. A simplicial map φ : K → L is
called a simplicial isomorphism if it is a bijection and φ−1 is a simplicial map.

A simplicial map φ extends to a piecewise linear map |φ| : |K| → |L| by the formula

|φ|(
∑

i

bivi) =
∑

i

biφ(vi) ,

where vi are the vertices2 of K and bi are the barycentric coordinates of a point in |K|. If φ is a
simplicial isomorphism then |φ| is a piecewise linear homeomorphism.

We need the following well known theorem from piecewise linear topology [9, Theorem 5, page
64]

Theorem 3 If K and L are two simplicial surfaces with homeomorphic topological realizations
then there are subdivisions K ′ " K and L′ " L and a simplicial isomorphism φ : K ′ → L′.

Our proof of Theorem 2 relies on the observation that the operation of performing an edge
collapse can be undone by a sequence of edge splits and edge collapses.

2As is standard, we abuse notation slightly and identity vertices, 0-simplices, and their images in the topological
realization of the complex. That is, v = {v} = |v|.
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(a) (b) (c) (d)

q

q1 qn

s′

s
e

t

Figure 9: An edge collapse ((a) ⇒ (b)) can be reversed by a sequence of edge splits ((b) ⇒ (c))
followed by a sequence of edge collapses ((c) ⇒ (d)).

Lemma 3 Suppose that the simplicial surface L is obtained from the simplicial surface K by an
edge collapse. Then K is isomorphic to a simplicial surface obtained from L by a sequence of edge
splits followed by a sequence of edge collapses.

Proof. Suppose that L is obtained from K by collapsing the edge e = {s, s′} which is common
to the two triangles T = {q, s, s′} and T ′ = {s, s′, t}. Suppose the link of vertex s′ consists of the set
of vertices {q = q0, q1, q2, q3, . . . , qn, t = qn+1, s}. Let Tj = {qj−1, qj, r}, j = 1, . . . , (n+ 1). Thus, L
is obtained from K by identifying s′ with s and removing the triangles T and T ′ (see Figure 9 (a)
and (b)).

To recover K from L, begin by sequentially performing edge splits along the edges {s, q1},
{s, q2},. . . , {s, qn}. Label the new vertices thus obtained s1, s2,. . . sn, and let L′ denote the final
simplicial surface (see Figure 9 (c)).

Let L′′ denote the simplicial surface obtained by sequentially collapsing the edges {s1, s2},
{s2, s3},. . . , {sn−1, sn} and denoting by s′ the single vertex to which s1,. . . sn collapse. It is not
difficult to see that, with this labeling, L′′ = K. (see Figure 9(d)).

A similar argument applies in the case where e is a boundary edge and, thus, common to only
one triangle. We leave a formal proof of this case to the reader. Q.E.D.

Lemma 4 If K ′ is a subdivision of a simplicial surface K, then K can be obtained from K ′ via a
sequence of edge collapses.

Proof. Because K ′ is a subdivision of K there is a piecewise linear homeomorphism φ : |K ′| →
|K|. We will obtain K from K ′ in three steps:

Step 1. For each triangle T of K, let VT denote the set of vertices of K ′ which map under φ
to the interior of |T |. (For some triangles, V ′

T may be empty.) Suppose that K1 is the simplicial
surface obtained by identifying the vertices of each non-empty VT with a single vertex vT . This
can be done via a sequence of edge collapses along edges joining vertices formed by identifying
vertices of VT . To see that K1 is a subdivision of K, we need only construct a piecewise linear
homeomorphism φ′ : |K1| → |K|. Set φ1(v) = φ(v) if v is not of the form vT and let φ(vT ) be the

21



barycenter of |T | for each vT , for VT �= ∅. It is not difficult to verify that φ1 extends uniquely to a
piecewise linear homeomorphism φ1 : |K1| → |K|.
Step 2. Let VE denote the set of vertices of K1 mapping under φ1 to the interior of an edge of

|K|. Let K2 be the simplicial surface obtained by identifying the vertices of each non-empty VE to
a single vertex vE . Notice that K2 can be obtained from K1 by a sequence of edge collapses along
edges joining only pairs of vertices contained in a single set of the form VE. It is not difficult to
show that K2 is a subdivision of K and that the homeomorphism φ2 : |K2| → |K| can be chosen
so that φ′′(vE) is the barycenter of the edge E for each non-empty VE .

Step 3. Let K3 be the simplicial complex obtained from K2 by collapsing each edge joining a
vertex of the form vE to a vertex of K. Each vertex of K3 can be identified with either a vertex of
K or with the barycenter of a triangle of K and the piecewise linear map φ3 : |K3| → |K| induces
by this identification is a homeomorphism. Thus, K3 is a subdivision of K.

Step 4. Finally, for each vertex of K3 of the form vT , collapse an edge of K3 joining vT to a
vertex of K. The resulting complex is K. Q.E.D.

Proof.(of Theorem 2) . First note that by Theorem 3, there are subdivisions K ′ " K and
L′ " L, such that K ′ and L′ are isomorphic.

By Lemma 4, K can be obtained from K ′ and L from L′ by finite sequences of edge collapses.

But, by Lemma 3, each edge collapse can be reversed by a sequence of edge splits and edge
collapses. Consequently K ′ can be obtained from K by a finite sequence of edge collapses and edge
splits.

Since there is a finite sequence of edge collapses and edge splits transforming K into K ′, which
is isomorphic to L′, and there is a finite sequence of edge splits and edge collapses transforming L′

into L, it follows that there is a finite sequence of edge splits and edge collapses transforming K
into a simplicial complex which is isomorphic to L. Q.E.D.

A.3 Tests for Legality of an Edge Collapse

The purpose of this appendix is to prove Theorem 4 which shows that the conditions given in
Section 4.2.1 are necessary and sufficient for an edge collapse to be legal.

Let K be a simplicial complex whose topological realization |K| is a compact surface with
possibly non-empty boundary. Let K ′ be the simplicial complex obtained by identifying the vertices
i and j, where {i, j} is a 1-simplex of K. We say that K ′ is obtained from K by an edge collapse.
Recall that we require that |K ′| be homeomorphic to |K|. When such is the case, we say that the
edge collapse {i, j} → h is legal. Not all edge collapses are legal.

Theorem 4 Let K ′ be the simplicial complex obtained from the simplicial complex K by collapsing
the edge {i, j}. Then |K ′| is homeomorphic to |K| if and only if the following conditions are all
satisfied:
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1. K has more than 4 vertices if neither {i} nor {j} are boundary vertices, or K has more than
3 vertices if either {i} or {j} are boundary vertices.

2. If i and j are both boundary vertices, {i, j} is a boundary edge.

3. For all vertices k adjacent to both i and j (i.e. {i, k} ∈ K and {j, k} ∈ K), {i, j, k} is a face
of K.

We consider first the case where K has fewer than 5 vertices. Observe that no edge collapses
are legal if K has only 3 vertices. For each simplicial surface has at least 3 vertices (since it must
have at least one 2-simplex). Since this is true of K ′, the complex K must have at least 4 vertices.

Now suppose that K has exactly 4 vertices. Then condition (3) is automatically satisfied. If K
admits an edge collapse, then K ′ has 3 vertices and so |K ′| is homeomorphic to a disk. But then
|K| is also homeomorphic to a disk and so has non-empty boundary. Notice, that in this case, K
may have only two possible configurations (either 2 or 3 faces), and conditions (1) and (2) ensure
that only legal edge collapses are allowed.

We have now shown that conditions (1)–(3) are necessary and sufficient in the case where K
has fewer than 5 vertices. Henceforth, we shall assume that K has at least 5 vertices.

The proof of Theorem 4 relies on finding a useful characterization of simplicial surfaces. To give
it, we need a few definitions. If s is a simplex of K then

◦
s denotes the interior of the topological

space |s|. Thus, if s is a 2-simplex then
◦
s is homeomorphic to an open disk, if s is a 1-simplex then

◦
s is homeomorphic to an open interval and if s is a 0-simplex

◦
s= |s|. If L is a subset of K (not

necessarily a subcomplex) then the topological realization of L (also called the underlying topological
space of L) is the topological subspace

|L| =
⋃
s∈L

◦
s⊂ |K| .

The standard open disk is the set of points D = {(x, y) | x2 + y2 < 1} ⊂ R2 and the standard
half-open disk is the subset set D+ = {(x, y) ∈ D | y ≥ 0}. The closures of D and D+ in R2

are written D and D+, respectively. The standard circle, written S, is the boundary of D. The
half-circle S+ is the intersection S ∩D+.

By definition, a simplicial surface K is a simplicial complex with the property that, for each
vertex v, there is a homeomorphism between | ) v;K| and either D or D+ sending v to the origin.
If v is an interior vertex then | ) v;K | is homeomorphic to D and if v is a boundary vertex then
| ) v;K| is homeomorphic to D+. For our purposes, a different (but equivalent) characterization is
needed. It is not difficult to show that | ) v;K| is homeomorphic to D if and only if |link(v;K)| is
homeomorphic to S and that it is homeomorphic to D+ if and only if |link(v;K)| is homeomorphic
to the half-circle S+. This leads to the characterization of simplicial surfaces given in the next
lemma.
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Lemma 5 A simplicial complex K of dimension 2 is a simplicial surface if and only if for each
vertex v of K the topological space |link(v;K)| is homeomorphic to either the circle S (in which
case, v is an interior vertex) or a half-circle S+ (in which case, v is a boundary vertex).

Proof of Necessity. We now show that conditions (2) and (3) are necessary conditions for
{i, j} → h to be legal.

Consider first condition (2) by showing that the if the edge collapse {i, j} → h is legal and i
and j are boundary vertices then {i, j} must be a boundary edge. Suppose that i and j are both
boundary vertices and suppose by way of contradiction that {i, j} is not a boundary edge. The
vertices i and j are each incident to two boundary edges and the boundary edges incident to i and
to j are disjoint (since they necessarily have distinct endpoints). But then a total of 4 boundary
edges of K ′ will be incident to h. Since h can only be incident to 2 boundary edges we have reached
a contradiction.

To prove the necessity of condition (3). Suppose that k is a vertex of K such that {k, i} and
{k, j} are in K but {i, j, k} is not a simplex of K. There are two cases to consider: (i) k an interior
vertex and (ii) k a boundary vertex.

(i) Suppose that k is an interior vertex. Then |link(k;K)| is homeomorphic to a circle. Hence,
there are vertices pa, a = 1, 2, . . . n, n > 2 such that

link(k;K) = {{p1}, {p2}, . . . , {pn}} ∪ {{p1, p2}, {p2, p3}, . . . , {pn, p1}} .
Moreover, {pa, pa+1, k} is a simplex of K for a = 1, 2, . . . n (where pn+1 = p1). We may arrange
that i = p1 and because {i, j, k} is not a simplex of K, j = pa for some 1 < a < n. The existence
of such a configuration, however, implies that the space K ′ is not a surface. For the link of k in K ′

is the simplicial complex obtained from link(k;K) by identifying the points p1 and pa. It is easily
seen that the topological realization of this is a “figure-8”. But this contradicts Lemma 5 with K
replaced by K ′.

(ii) Consider next the case where k is a boundary vertex. Then there are vertices pa, a =
1, 2, . . . n, n > 1 such that

link(k;K) = {{p1}, {p2}, . . . , {pn}} ∪ {{p1, p2}, {p2, p3}, . . . , {pn−1, pn}} .
Moreover, {pa, pa+1, k} is a simplex of K for a = 1, 2, . . . n − 1 and {k, p1} and {k, pn} are both
boundary edges. In this case, |link(k;K)| is homeomorphic to the half-circle. Again link(k;K ′)
is obtained from link(k;K) by identifying i and j and again Lemma 5 applies. Thus |link(k;K ′)|
must be homeomorphic to either the circle or the half-circle.

If either of i or j is pa for 1 < a < n then the |link(k;K ′)| is easily seen to homeomorphic to
neither the circle nor the half-circle (it is the spaced obtained by identifying an interior point of
the closed unit interval with another point of the interval). Hence, we may assume that p1 = i and
pn = j. The union of the three edges {i, j}, {j, k} and {k, i} then forms a boundary component of
K, and the effect of the edge collapse {i, j} → h is to remove one of the boundary components of
K. Hence, although it may happen that K ′ is a simplicial surface, the two topological spaces |K|
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and |K ′| cannot be homeomorphic since (if they are both surfaces) their boundaries have different
numbers of boundary components.

Proof of Sufficiency. Now suppose that the number of vertices of K is at least 5 and that
conditions (2) and (3) are satisfied. We want to show that the spaces |K| and |K ′| are homeomor-
phic.

Observe thatK andK ′ agree outside of simplicial neighborhoods of {i, j} and h. More precisely,
if we set

N = )i;K ∪ )j;K and N ′ = )h,K ′

and
C = L ∩N = L ∩N ′ , (1)

then
L := K −N = K ′ −N ′ .

The topological space |L| can thus be viewed in two ways:

• as the space obtained by removing the open set | ) i ∪ )j| from |K|
• or as the space obtained by removing the open set | ) h| from |K ′|.

This construction can be reversed:

|K| = |L| ∪ |N | and |K| ∩ |N | = |C|

and
|K ′| = |L| ∪ |N ′| and |K ′| ∩ |N | = |C|

(i.e. |K| is obtained by attaching |N | to |L| along the set |C| and |K ′| is obtained attaching |N ′|
to |L| along |C|).

Thus, |K| and |K ′| are homeomorphic if and only if there is a homeomorphism between |N |
and |N ′| which is the identity on |C|. We show that this is in fact the case. It is best to consider
separately the three cases: (a) i and j both interior vertices, (b) exactly one of i and j are interior
vertices and (c) both i and j are boundary vertices.

Case (a). Suppose that i and j are both interior vertices. Then there are exactly two vertices
p0 and q0 such that the simplices {j, i, p0} and {i, j, q0} are in K. Because K is a simplicial surface,
the links of i and j are circles. Hence, there are vertices

p0, p1, . . . , , pm = q0 and q0, q1, . . . , , qn = p0 ,

such that
{j, pa, pa+1} is in K for a = 0, 1, . . . ,m− 1

and
{i, qb, qb+1} is in K for b = 0, 1, . . . , n− 1 .
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Figure 10: The sets N in the cases where: (a) i and j are both interior vertices, (b) i is a boundary
vertex and j is an interior vertex, and (c) i and j are both boundary vertices.

Thus,

|)j;K | = |{i, j, p0}| ∪
m−1⋃
a=0

|{j, pa, pa+1}| ∪ |{i, j, q0}|

and

|)i;K | = |{i, j, q0}| ∪
n−1⋃
b=0

|{i, qb, qb+1}| ∪ |{i, j, p0}|

We claim that the vertices
p0, p1, . . . , pm−1, q0, q1, . . . , qn−1

are distinct. To see this note first that pa, a = 0, 1, . . . ,m are distinct because |link(j;K)| is a
circle. By the same reasoning, qb, b = 0, 1, . . . , n are distinct. Now if pa = qb for some 0 ≤ a ≤ m
and 0 ≤ b ≤ n, then condition (3) implies that {i, j, pa} is in K. Hence, either (a, b) = (m, 0) or
(a, b) = (0, n).

Observe also that m + n > 2. For suppose not then {i, p0, q0} and {j, p0, q0} are in K from
which it is not difficult to show that K has only 4 vertices and is a tetrahedron.

Thus,

|N | =
m−1⋃
a=0

|σpa | ∪
n−1⋃
b=0

|σqb
|

is homeomorphic to D and |C| (the boundary of |N |) is homeomorphic to S. It is now easy to
construct a homeomorphism between |N | and |N ′| which is the identity on |C| from which it follows
that |K| and |K ′| are homeomorphic.

Case (b). Suppose that i is a boundary vertex and j is an interior vertex. Then there are
exactly two vertices p0 and q0 such that {j, i, p0} and {i, j, q0} are in K. Because K is a simplicial
surface, the link of i is a half-circle and the link of j is a circle. Hence, there are vertices

r0, r1, . . . , , r� = p0 , and p0, p1, . . . , , pm = q0 , and q0, q1, . . . , , qn ,

such that
{i, ra, ra+1} ∈ K for a = 0, 1, . . . , -− 1 ,
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{j, pb, pb+1} ∈ K for b = 0, 1, . . . ,m− 1

and
{i, qc, qc+1} ∈ K for c = 0, 1, . . . , n− 1 .

Consequently,

|)j;K | =
m−1⋃
b=0

|{j, pb, pb+1}| ∪ |{i, j, q0}| ∪ |{i, j, p0}|

and

|)i;K | =
�−1⋃
a=0

|{i, ra, ra+1}| ∪ |{i, j, p0}| ∪ |{i, j, q0}| ∪
n−1⋃
c=0

|{i, qc, qc+1}|

We claim that the vertices

r0, . . . , r�−1, p0, . . . , pn−1, q0, . . . , qm−1

are distinct. The reasoning is the same as that used in case (a); we leave it to the reader to fill in
the details. This implies that

|N | =
�−1⋃
a=0

|{i, ra, ra+1}| ∪
m−1⋃
b=0

|{j, pb, pb+1}| ∪
n−1⋃
c=0

|{j, qc, qc+1}|

is homeomorphic to the closed half-disk D+ and |C| to the half-circle S+. The construction of a
homeomorphism between |N | and |N ′| which is the identity on |C| and which sends i to h is then
routine. Thus, in this case, too, the spaces |K| and |K ′| are homeomorphic.

Case (c) Reasoning similar to that of cases (a) and (b) shows that |N | is homeomorphic to the
half-disk D+ and |C| is homeomorphic to the half-circle S+, and that there is a homeomorphism
from |N | to |N ′| which is the identity on |C| and sends i to h. Hence, |K| and |K ′| are homeomorphic.
Details are left to the reader.
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(a) Object to be sampled (b) Sampled points X (n = 4102)

(c) Output of phase one (M0) (d) Result of mesh optimization without Espring

(e) Optimization for fixed K0 (κ = 10−2) (f) Optimization with κ = 10−2

Figure 11: Surface reconstruction from simulated multi-view range data.
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(a) Optimization with κ = 10−3 (b) Optimization with κ = 10−4

(c) Final optimization with κ = 10−8

(e) Surface segmentation (11 components) (f) Smooth shading after segmentation

Figure 12: Surface reconstruction (continued).
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(a) Points from laser range finder (n = 12, 745) (b) Points from laser range finder (n = 16, 864)

(c) Output of phase one (d) Output of phase one

(e) Output of phase two (optimized mesh) (f) Output of phase two (optimized mesh)

Figure 13: Surface reconstruction from actual range data.
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(a) Original mesh M0 (b) Sampled point set X (n = 6752).

(c) Simplified mesh (crep = 10−5) (d) Simplified mesh (crep = 10−4)

Figure 14: Mesh simplification example.
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