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Abstract

We present a real-time rendering scheme that reuses shading sam-
ples from earlier time frames to achieve practical antialiasing of
procedural shaders. Using a reprojection strategy, we maintain sev-
eral sets of shading estimates at subpixel precision, and incremen-
tally update these such that for most pixels only one new shaded
sample is evaluated per frame. The key difficulty is to prevent ac-
cumulated blurring during successive reprojections. We present a
theoretical analysis of the blur introduced by reprojection methods.
Based on this analysis, we introduce a nonuniform spatial filter,
an adaptive recursive temporal filter, and a principled scheme for
locally estimating the spatial blur. Our scheme is appropriate for
antialiasing shading attributes that vary slowly over time. It works
in a single rendering pass on commodity graphics hardware, and
offers results that surpass 4×4 stratified supersampling in quality,
at a fraction of the cost.

1 Introduction

The use of antialiasing to remove sampling artifacts is an impor-
tant and well studied area in computer graphics. In real-time ras-
terization, antialiasing typically involves two hardware-supported
techniques: mipmapped textures for prefiltered surface content, and
framebuffer multisampling to remove jaggies at surface silhouettes.

With the increasing programmability of graphics hardware, many
functionalities initially developed for offline rendering are now fea-
sible in real-time. These include procedural materials and complex
shading functions. Unlike prefiltered textures, procedurally defined
signals are not usually bandlimited [Ebert et al. 2003], and produc-
ing a bandlimited version of a procedural shader is a difficult and
ad-hoc process [Apodaca and Gritz 2000].

To reduce aliasing artifacts in procedurally shaded surfaces, a com-
mon approach is to increase the spatial sampling rate using super-
sampling (Figure 1c). However, it can be prohibitively expensive to
execute a complex procedural shader multiple times at each pixel.
Fortunately, it is often the case that at any given surface point,
expensive elements of the surface shading (such as albedo) vary
slowly or are constant over time. A number of techniques can auto-
matically factor a procedural shader into static and dynamic layers
[Guenter 1994; Jones et al. 2000; Sitthi-amorn et al. 2008]. Our idea
is to sample the static and weakly dynamic layers at a lower tempo-
ral rate to achieve a higher spatial sampling rate for the same com-
putational budget. The strong dynamic layers can be either sampled
at the native resolution or supersampled using existing techniques.

We present a real-time scheme, amortized supersampling, that eval-
uates the static and weak dynamic components of the shading func-
tion only once for the majority of pixels, and reuses samples com-
puted in prior framebuffers to achieve good spatial antialiasing. The
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Figure 1: For a moving scene with a procedural shader (top row of
Figure 14), comparison of (a) no antialiasing, (b) jittered reprojec-
tion, (c) 4×4 stratified supersampling, (d) our amortized supersam-
pling, and (e) ground truth reference image.

general idea of reusing shading information across frames has been
studied extensively, as reviewed in Section 2. Our approach builds
on the specific strategy of real-time reprojection, whereby the GPU
pixel shader “pulls” information associated with the same surface
point in earlier frames. Recent work on reprojection has focused on
reusing expensive intermediate shading computations across frames
[Nehab et al. 2007] and temporally smoothing shadow map bound-
aries [Scherzer et al. 2007]. In contrast, our goal is effective super-
sampling of more general shading functions.

Amortized supersampling faces many challenges not present in or-
dinary supersampling. Due to scene motion, the set of samples
computed in earlier frames form an irregular pattern when repro-
jected into the current frame. Moreover, some samples become in-
valid due to occlusion. Thus the set of spatio-temporal samples
available for reconstruction has much less structure than a typical
grid of stratified stochastic samples.

We build on the jittered sampling and recursive exponential
smoothing introduced in prior reprojection work. An important
contribution of this paper is a theoretical analysis of the spatio-
temporal blur introduced by these techniques as a function of the
relative scene motion and smoothing factor applied in the recursive
filter. We show that by adjusting this smoothing factor adaptively,
the basic reprojection algorithm can be made to converge to per-
fect reconstruction (infinite supersampling) for stationary views of
static scenes (Section 4.1). Furthermore, we show that for moving
surfaces, straightforward reprojection leads to excessive blurring
(Figure 1b). Our scheme makes several contributions in addressing
this key issue:

• Use of multiple subpixel buffers to maintain reprojection es-
timates at a higher spatial resolution;

• Irregular round-robin update of these subpixel buffers to im-
prove reconstruction quality, while still only requiring one
sample evaluation per pixel per frame;

• A principled approach to estimate and limit the amount of blur
introduced during reprojection and exponential smoothing;

• Adaptive evaluation of additional samples in disoccluded pix-
els to reduce aliasing;

• A strategy to estimate and react to slow temporal changes in
the shading.



Amortized supersampling is compatible with the modern rasteriza-
tion pipeline implemented on commodity graphics hardware. It is
lightweight, requiring no preprocessing, and thus provides a prac-
tical approach for antialiasing existing procedural shaders. Also, it
requires only a single rendering pass, and can be used in conjunc-
tion with hardware multisampling for antialiasing geometry silhou-
ettes. We show that it achieves results that are qualitatively compa-
rable or superior to 4×4 stratified supersampling, but at a fraction
of the rendering cost (Figure 1d).

2 Related work

Data caching and reuse Many offline and interactive ray-
based rendering systems exploit the spatio-temporal coherence of
animation sequences [Cook et al. 1987; Badt 1988; Chen and
Williams 1993; Bishop et al. 1994; Adelson and Hodges 1995;
Mark et al. 1997; Walter et al. 1999; Bala et al. 1999; Ward and Sim-
mons 1999; Havran et al. 2003; Tawara et al. 2004]. The idea is also
used in hybrid systems that use some form of hardware acceleration
[Simmons and Séquin 2000; Stamminger et al. 2000; Walter et al.
2002; Woolley et al. 2003; Gautron et al. 2005; Zhu et al. 2005;
Dayal et al. 2005]. These systems focus primarily on reusing expen-
sive global illumination or geometry calculations such as ray-scene
intersections, indirect lighting estimates, and visibility queries. A
related set of methods opportunistically reuse shading information
to accelerate real-time rendering applications by reprojecting the
contents of the previous frame into the current frame [Hasselgren
and Akenine-Moller 2006; Nehab et al. 2007; Scherzer et al. 2007;
Scherzer and Wimmer 2008]. Although we also apply a reprojec-
tion strategy to reuse shading information over multiple frames, we
do so to achieve spatial antialiasing; this application was first noted
by Bishop et al. [1994], but not pursued. Furthermore, we add to
this area of research a rigorous theoretical analysis of the type of
blur introduced by repeatedly resampling a framebuffer, a funda-
mental operation in these systems.

Antialiasing of procedural shaders There is a considerable
body of research on antialiasing procedural shaders, recently re-
viewed by Brooks Van Horn III and Turk [2008]. Creating a ban-
dlimited version of a procedural shader can be a difficult task be-
cause analytically integrating the signal is often infeasible. Sev-
eral practical approaches are reviewed in the book by Ebert et al.
[2003]. These include clamping the high-frequency components
of a shader that is defined in the frequency domain [Norton et al.
1982], precomputing mipmaps for tabulated data such as lookup ta-
bles [Hart et al. 1999], and obtaining approximations using affine
arithmetic [Heidrich et al. 1998]. However, the most general and
common approach is still to numerically integrate the signal using
supersampling [Apodaca and Gritz 2000]. Our technique brings the
simplicity of supersampling to real-time applications at an accept-
able increase in rendering cost.

Post-processing of rendered video The pixel tracing filter
of Shinya [1993] is related to our approach. Starting with a ren-
dered video sequence, the tracing filter tracks the screen-space po-
sitions of corresponding scene points, and combines color samples
at these points to achieve spatial antialiasing in each frame. The
filtering operation is applied as a post-process, and assumes that
the full video sequence is accessible. In contrast, our approach is
designed for real-time evaluation. We maintain only a small set of
reprojection buffers in memory, and update these efficiently with
adaptive recursive filtering.

3 Review of reprojection

Reprojection methods [Nehab et al. 2007; Scherzer et al. 2007] al-
low reusing values generated at the pixel level over consecutive
frames. We next summarize the basic approach which has two main
parts: reprojection and recursive exponential smoothing.

Reprojection The core idea is to let the rendering of the current
frame gather and reuse shading information from surfaces visible
in the previous frame. Conceptually, when rasterizing a surface at
a given pixel, we determine the projection of the surface point into
the previous framebuffer, and test if its depth matches the depth
stored in the previous depth buffer. If so, the point was previously
visible, and its attributes can be safely reused. Formally, let buffer
ft hold the cached pixel attributes at time t, and buffer dt hold
the pixel depths. Let ft[p] and dt[p] denote the buffer values at
pixel p ∈ ℤ2, and let ft(⋅) and dt(⋅) denote bilinear sampling.
For each pixel p = (x, y) at time t, we determine the 3D clip-
space position of its generating scene point at time t-1, denoted
(x′, y′, z′) = �t-1(p). The reprojection operation �t-1(p) is ob-
tained using a simple computation in the vertex program and inter-
polator as described by Nehab et al. [2007]. If the reprojected depth
z′ lies within some tolerance of the bilinearly interpolated depth
dt-1(x′, y′) we conclude that ft[p] has some correspondence with
the interpolated value ft-1(x′, y′). If the depths do not match (due
to occlusion), or if (x′, y′) lies outside the view frustum at time t-1,
no correspondence exists and we denote this by �t-1(p) = ∅.

Recursive exponential smoothing Both Nehab et al. [2007]
and Scherzer et al. [2007] showed how this reprojection strategy
can be combined with a recursive temporal filter for antialiasing.
We first review this basic principle before extending it to a more
general setting.

At each pixel p, the shader is evaluated at some jittered position to
obtain a new sample st[p]. This sample is combined with a running
estimate of the antialiased value maintained in ft[p] according to a
recursive exponential smoothing filter:

ft[p]← (�)st[p] + (1− �)ft-1
(
�t-1(p)

)
. (1)

Note that the contribution a single sample makes to this estimate
decreases exponentially in time, and the smoothing factor � regu-
lates the tradeoff between variance reduction and responsiveness to
changes in the scene. For example, a small value of � reduces the
variance in the estimate and therefore produces a less aliased result,
but introduces more lag if the shading changes between frames. If
reprojection fails at any pixel (i.e. �t-1(p) = ∅), then � is locally
reset to 1 to give full weight to the current sample. This produces
higher variance (greater aliasing) in recently disoccluded regions.

4 Amortized supersampling: theory

Spatial antialiasing is achieved by convolving the screen-space
shading function S with a low-pass filter G [Mitchell and Netravali
1988]. We use a Monte Carlo algorithm with importance sam-
pling [Robert and Casella 2004] to approximate this convolution
(S ∗G)(p) at each pixel p:

fN [p]← 1

N

N∑
i=1

S
(
p+ gi[p]

)
. (2)

Here gi[p] plays the role of a per-pixel random jitter offset, dis-
tributed according to G. Our choice for G is a 2D Gaussian kernel
with standard deviation �G = 0.4737 as this closely approximates



Figure 2: Illustration of the samples that contribute to the estimate
at a single pixel ft[p] under a constant fractional velocity field v
(and assuming no jitter for simplicity). Note that the sample points
spread out over time, but that their weights (proportional to the ra-
dius of each dot) decreases at a rate determined by the smoothing
factor �. We characterize the amount of blur at each pixel by the
weighted spatial variance of these sample offsets.

the kernel of Mitchell and Netravali [1988] while avoiding negative
lobes, which interfere with importance sampling [Ernst et al. 2006].
It is easily shown that the variance of the estimator is

Var(fN [p]) =
1

N
Var
(
f1[p]

)
, (3)

where Var
(
f1[p]

)
is the per-pixel variance of the Monte Carlo esti-

mator using just one sample. Using a recursive exponential smooth-
ing filter, we can amortize the cost of evaluating the sum in (2) over
multiple frames:

ft[p]← (�t[p])S
(
p+ gt[p]

)
+ (1− �t[p]) ft-1

[
�t-1(p)

]
. (4)

In words, a running estimate of (2) is maintained at each pixel p
in the buffer ft and is updated at each frame by combining a new
jittered sample S

(
p+gt[p]

)
with the previous estimate according to

the smoothing factor �t[p]. Note that this formulation allows �t[p]
to vary over time and with pixel location.

We first present an antialiasing scheme for stationary views and
static scenes, and then consider the more general case of arbitrary
scene and camera motion. Detailed derivations of key results in
these sections are found in the appendix.

4.1 Stationary viewpoint and static scene

In the case of a stationary camera viewpoint and static scene, the re-
projection map � is simply the identity. In this case, the smoothing
factor can be gradually decreased over time as

�t[p] =
1

t
, (5)

resulting in an ever-increasing accumulation of samples, all with
uniform weights. This causes the estimates ft[p] to converge to
perfect antialiasing (infinite supersampling) as t → ∞, with vari-
ance decreasing as Var

(
f1[p]

)
/t.

4.2 Moving viewpoint and dynamic scene

The presence of relative scene motion (caused by a moving cam-
era or moving/deforming scene objects) significantly complicates
the task of amortizing (2) over multiple frames. Specifically, any
algorithm must both respond to changes in visibility and avoid un-
wanted blurring due to successive resamplings. We next describe
our approach for addressing these two issues.

4.2.1 Accounting for visibility changes

In dynamic scenes, the number of consecutive frames that a surface
point has been visible varies across pixels. We therefore maintain
a record of the effective number of samples that have contributed
to the current estimate at each pixel. More precisely, we store the
variance reduction factor Nt[p] for each pixel, and use this value
to set the per-pixel smoothing factor �t[p] at each frame, with the
goal of reproducing the stationary case in Section 4.1.

When a surface point becomes visible for the first time (ei-
ther at start-up or due to a disocclusion) we initialize �t[p]← 1
and Nt[p]← 1. In subsequent updates, we apply the rules

�t[p]←
1

Nt-1[p] + 1
(6)

and

Nt[p]← Nt-1[p] + 1. (7)

As discussed later on, the presence of scene motion requires us to
limit this indefinite accumulation of uniformly weighted samples
— even for pixels that remain visible over many frames. To do so,
Sections 5.2 and 6.2 prescribe lower bounds on the value of �t[p]
that override (6). This effectively changes the rate at which new
samples are accumulated, leading to a new update rule for Nt[p]
(see the appendix for a derivation):

Nt[p]←

(
�t[p]

2 +

(
1− �t[p]

)2
Nt-1

[
�t-1(p)

])−1

. (8)

Note that (8) reduces to (7) when �t[p] is not overridden, so in
practice we always use (8).

4.2.2 Modeling blur due to resampling

In general, the reprojected position �t-1(p) used in (4) lies some-
where between the set of discrete samples in buffer ft-1 and thus
some form of resampling is required. This resampling involves
computing a weighted sum of the values in the vicinity of �t-1(p).
Repeatedly resampling values at intermediate locations has the ef-
fect of progressively increasing the number of samples that con-
tribute to the final estimate at each pixel. Moreover, the radius of
this neighborhood of samples increases over time (Figure 2), lead-
ing to undesirable blurring (Figure 1b). Our goal is to limit this
effect. We first model it mathematically.

The value stored at a single pixel is given by a weighted sum of a
number of samples n(t, p) evaluated at different positions:

ft[p] =

n(t,p)∑
i=1

!t,i S
(
p+ �t,i[p]

)
with

n(t,p)∑
i=1

!t,i = 1. (9)

The weights !t,i are a function of the particular resampling strategy
employed and the sequence of weights �t used in the recursive fil-
ter. The offsets �t,i denote the position of each contributing sample



Simulation Equation (11)
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Figure 3: Experimental validation of Equation (11). For each veloc-
ity v and weight � we rendered a resolution chart until convergence
using (4). We compared the rendered result to a set of images of the
same resolution chart rendered with (2) using a low-pass filter G′

and a range of standard deviations �G′ . The left plot shows the �G′

that gives the best match (highest PSNR) as a function of v and �.
The right plot shows the blur standard deviation predicted by (11).
The RMSE between the observed and predicted blur standard devi-
ations is only 0.0382 pixels.

with respect to the center of the pixel p. Note that each displace-
ment �t,i[p] is the result of a combination of offsets due to jitter and
reprojection. Following the derivation in the appendix, the amount
of blur at a pixel can be characterized by the average weighted spa-
tial variance across both dimensions

�2
t [p] = 1

2
Varx

(
{�t,i[p]}n(t,p)

i=1

)
+ 1

2
Vary

(
{�t,i[p]}n(t,p)

i=1

)
. (10)

Although obtaining a closed-form expression for �2
t [p] is impracti-

cal for arbitrary scene motion, the case of constant panning motion
is tractable and provides an insightful case that will serve as the
basis of our approach for estimating (and limiting) unwanted blur.
Moreover, other types of motion are well approximated locally by
translations. This type of motion resamples each pixel at a constant
offset given by the fractional velocity v = �t-1(p) − ⌊�t-1(p)⌋.
Furthermore, let us assume for now that standard bilinear interpo-
lation is used to reconstruct intermediate values and that a constant
smoothing factor � is used in (4). As shown in the appendix, under
these assumptions the expected blur variance E

(
�2
t [p]
)

converges
(as t→∞) to

�2
v = �2

G +
1− �
�

vx(1− vx) + vy(1− vy)

2
. (11)

The simulation results shown in Figure 3 confirm the accu-
racy of this expression. Each factor in (11) suggests a dif-
ferent approach for reducing the amount of blur. The factor(
vx(1− vx) + vy(1− vy)

)
arises from the choice of bilinear in-

terpolation. We encourage the fractional velocity vx and vy to con-
centrate around 0 or 1 by maintaining an estimate of the framebuffer
at a higher resolution, and by avoiding resampling whenever possi-
ble (Section 5.1). In addition, we reduce the factor 1−�

�
by using

larger values of �, although this has the disadvantage of limiting
the magnitude of antialiasing. We present a strategy for setting �
that controls this tradeoff (Section 5.2). Together, these ideas form
the backbone of our antialiasing algorithm.

5 Algorithm

As described in this section, our antialiasing algorithm uses multi-
ple subpixel buffers to limit the amount of blur, adapts sample eval-
uation at disoccluded pixels, and adjusts the smoothing factor � to
control the tradeoff between blurring and aliasing.

Figure 4: Sampling from multiple subpixel buffers. To limit the
amount of blur, we use nonuniform blending weights defined by
a tent function centered on the quadrant being updated. (a) In the
absence of local motion, no resampling blur is introduced; (b) For
a moving scene, our method selects those samples closest to the
desired quadrant center to limit the amount of blur.

5.1 Subpixel buffers

We decrease unwanted blur by maintaining screen-space esti-
mates f at twice the screen resolution, as this tends to reduce the
terms vx(1− vx) and vy(1− vy) in (11) by half. We associate es-
timates with the four quadrants of each pixel, and update these in
round-robin fashion. These 2×2 quadrant samples are deinterleaved
to form K=4 independent subpixel buffers {bk}, k ∈ {0, 1, 2, 3},
each at screen resolution. Each buffer bk stores an estimate offset
by �k ∈

{(−0.25
−0.25

)
,
(−0.25

0.25

)
,
(

0.25
−0.25

)
,
(

0.25
0.25

)}
relative to the center

of the pixel.

Note that in the absence of scene motion, these four subpixel buffers
effectively form a higher-resolution framebuffer. However, under
scene motion, the subpixel samples computed in earlier frames re-
project to offset locations, as indicated in Figure 4.

At each frame, we compute one new sample per pixel, and up-
date one of the subpixel buffers, bi(t), according to (4) using in-
formation gathered from all the subpixel buffers. (For now, let
i(t) = t mod K.) We then compute the final pixel color as a
weighted average of these subpixel buffers. Figure 5 illustrates the
steps executed by the pixel shader at each frame t:

1. st[p]← EVALUATESAMPLE
(
p+ �i(t) + gt[p]

)
Evaluate the procedural shader at a new sample position;

2. bi(t)[p]← UPDATESUBPIXEL
(
{bk[p]}, st[p], t

)
Update one subpixel buffer using all previous subpixel buffers
and the new sample;

3. ft[p]← COMPUTEPIXELCOLOR
(
{bk[p]}, st[p]

)
Compute the output pixel color given the new sample and the
subpixel buffers;

4. Nt[p]← UPDATEEFFECTIVENUMBEROFSAMPLES
(
Nt[p]

)
Update the new per-pixel effective number of samples.

These steps are implemented in the real-time graphics pipeline. The
vertex shader computes the reprojection coordinates needed to ac-
cess the four subpixel buffers (as with traditional reprojection [Ne-
hab et al. 2007]), and the fragment shader outputs three render tar-
gets: the framebuffer ft, an updated version bi(t) of one of the sub-
pixel buffers, and updated values for the per-pixel number Nt of
samples. All steps are performed together in a single GPU render-
ing pass, as described below.



Figure 5: The main steps of our fragment shader algorithm. All
steps are performed together in the main rendering pass.

Step 1: Evaluate a new sample The first step is to eval-
uate the procedural shader at a new sample position. The offset
�i(t) centers the jitter distribution on the appropriate quadrant. The
jitter value gt[p] is drawn from a Gaussian distribution with stan-
dard deviation �G = 0.2575. When the values from all the sub-
pixel buffers are combined (and in the absence of motion), this
standard deviation gives the best fit to the wider Gaussian kernel
(�G = 0.4737). We jitter each pixel independently by offsetting
the interpolated values received from the rasterizer before they are
sent to the fragment shader.

Step 2: Update one subpixel buffer During this step,
we access all subpixel buffers using reprojection to reconstruct
b̃(p+ �i(t)), which is then combined with the sample st[p] from
step 1:

bi(t)[p]← (�) st[p] + (1− �) b̃(p+ �i(t)). (12)

To minimize the amount of blur, b̃ should favor samples nearest the
center of the quadrant being updated. As illustrated in Figure 4, our
approach is to define a bilinear tent function Λr that encompasses
the current quadrant in the framebuffer (with r = 0.5):

Λr(v) = clamp(1− ∣vx∣
r
, 0, 1) clamp(1− ∣vy∣

r
, 0, 1). (13)

Ideally, we would like to compute the weighted sum of all the sam-
ples that fall under the support of this function, after these are for-
ward-projected into the current frame. However, certain approxi-
mations are required to make this operation efficient on graphics
hardware. Instead of using forward reprojection, we compute the
positions pk of the centers of these tents reprojected back into each
subpixel buffer (reverse reprojection), properly accounting for the
differences in quadrant offsets:

pk = �t-k-1(p+ �i(t))− �i(t-k-1), k ∈ {0, 1, 2, 3}. (14)

We then approximate the footprint of the projected tent function by
an axis-aligned square of radius

rk =
∥∥∥J�t-k-1 [p]

(
0.5
0.5

)∥∥∥
∞
, (15)

where J�t-k-1 is the Jacobian of each reprojection map, which is
directly available using the ddx/ddy shader instructions. This is to
account for changes in scale during minification or magnification.

Rather than accumulating all of the samples in the resulting foot-
print (which would be too expensive), we consider only the four
nearest samples in each subpixel buffer (altogether sixteen sam-
ples), located at ⌊pk⌋+ Δ with Δ ∈

{(
0
0

)
,
(

1
0

)
,
(

0
1

)
,
(

1
1

)}
:

b̃(p+ �i(t)) =

∑
k,Δ wk,Δ bi(t-k-1)

[
⌊pk⌋+ Δ

]∑
k,Δ wk,Δ

, (16)

weighting these nearest samples according to the tent function as

wk,Δ = Λrk
(
pk − (⌊pk⌋+ Δ)

)
. (17)

As proved in the appendix, this is equivalent to taking the weighted
average of the values of each subpixel buffer resampled at positions
⌊pk⌋+ ok using standard bilinear interpolation

b̃(p+ �i(t)) =

∑
k wk bi(t-k-1)

(
⌊pk⌋+ ok

)∑
k wk

(18)

where wk =
∑

Δ wk,Δ and

ok =

(
wk,(01)

+ wk,(11)

wk

wk,(10)
+ wk,(11)

wk

)T

. (19)

This formulation leverages hardware support for bilinear interpola-
tion and accelerates the resampling process. Finally, note that for
the special case of a static scene, the weight wi(t-4) is exactly one
while the others are zero and the offset vector vi(t-4) is zero, so the
previous point estimate is retrieved unaltered. Thus, no blur is in-
troduced and the running estimate converges exactly. Also, in the
special case of constant panning motion, each subpixel buffer con-
tributes exactly one sample to the sum in (16) due to the fact that
the tent function Λ0.5 has unit diameter. Thus, each subpixel buffer
effectively undergoes nearest-sampling.

Step 3: Compute pixel color The computation of the final
pixel color follows a process very similar to that of step 2. We
access all subpixel buffers using reprojection to form an estimated
value f̃(p) at the center of the pixel, and combine this estimate with
the fresh sample st[p]:

ft[p]←
( �
K

)
st[p] +

(
1− �

K

)
f̃(p). (20)

The estimate f̃(p) is obtained just as in (18), but using posi-
tion p′k = �t-k-1(p)− �i(t-k-1) reprojected from the center of the
pixel rather than the center of one quadrant, and using a tent func-
tion with radius r′k = 2rk that is twice as large. The current sample
st[p] appears in this formula because the estimate f̃(p) is computed
using the old contents of buffer bi(t), before it is updated in step 2
in the same rendering pass. It is weighted by �/K because it would
contribute to only one of the K subpixel buffers.

Step 4: Update effective number of samples Buffer Nt is
updated from Nt−1 and �t using formula (8). The algorithm uses
a pair of ping-pong buffers to maintain Nt and Nt−1.

5.2 Limiting the amount of blur

Given a threshold �b on the amount of blur (variance of the sam-
ple distribution) and the velocity v due to constant panning motion,
we would like to compute the smallest smoothing factor ��b(v)
that provides the greatest degree of antialiasing without exceeding
this blur threshold. Unlike in the case of traditional bilinear repro-
jection, which admits a bound on � by inverting (11), our more



Figure 6: Comparison of signal drift for a simple round-robin sub-
pixel update sequence (left) and our irregular sequence (right).

�b = 1 �b = 2

0.2

Figure 7: 2D plot of the smallest smoothing factor ��b(v) that re-
spects a blur threshold �b, as function of the 2D velocity vector v.

complex algorithm does not lend itself to a similar analysis. The
appendix provides a more detailed explanation of why extending
these earlier results is impractical. In particular, the mean � of the
sample distribution is no longer guaranteed to be zero. This is due
to the fact that the reconstruction kernel Λ0.5 in (17) effectively re-
duces to nearest-sampling during panning motion. This can cause
the signal to drift spatially and may lead to visible artifacts (Fig-
ure 6). We combine two strategies to address this problem:

1. Rather than updating the subpixel buffers in simple round-
robin order

(
i(t) = t mod K

)
, we use an irregular update

sequence that breaks the drift coherence. We found that the
following update sequence works well in practice: (0, 1, 2, 3, 0,
2, 1, 3, 1, 0, 3, 2, 1, 3, 0, 2, 2, 3, 0, 1, 2, 0, 3, 1, 3, 2, 1, 0, 3, 1, 2, 0).

2. Rather than bound the variance �2 of the sample distribution
(second moment about the mean �), we bound the quantity
�2 + �2 (second moment about zero, the pixel center). This
simultaneously limits the degree of blur and drift.

The irregular update sequence makes it difficult to derive a closed-
form expression for the second moment of the sample distribution.
Instead, we compute �2 +�2 numerically in an off-line simulation.
Specifically, we compute the moments of the sample distribution in
each subpixel buffer over a range of values of � and v. We then
average the moments over an entire period of the update sequence,
over the x and y directions according to (10), and over all subpixel
buffers. These results are finally inverted to produce a table ��b(v).
At runtime, this table is accessed to retrieve the value of � that
meets the desired threshold for the measured per-pixel velocity. We
found that a 643 table is sufficient to capture the variation in��b(v).
Figure 7 shows slices of this function for two different values of �b.

Putting everything together, we apply the following update rule in
place of (6):

�t[p]← K max

(
1

Nt-1 + 1
, ��b(v)

)
. (21)

28.16dB 30.54dB 23.65dB

(a) Small �b (b) Good �b (c) Large �b (d) Reference

Figure 8: Effect of the blur tolerance �b. Values of �b that are too
small aggressively discard earlier estimates and can lead to aliasing,
while values that are too large may combine too much resampled
data and cause blurring, as can be seen in this close-up view (from
top row of Figure 14).

(a) Eval map (b) One eval (c) Adaptive eval (d) Reference

Figure 9: As shown in this close-up view (from Figure 14), we re-
duce aliasing in newly disoccluded regions by adaptively evaluating
additional samples when reprojection fails. The shades of red in (a)
indicate the number (1–4) of additional samples.

The factor K = 4 is due to the fact that we update each subpixel
buffer every fourth frame. At pixels where the scene is stationary,
the effect of (21) is to progressively reduce the value of � just as
in (6). In the case of a moving scene, however, the value of � is set
to give the greatest reduction in aliasing at an acceptable amount of
blur as shown in Figure 8.

5.3 Adaptive evaluation when reprojection fails

For surfaces that recently became visible, the reprojection from one
or more subpixel buffers may fail. In the worst case, only the new
sample st[p] is available. In these cases, the shading is prone to
aliasing as seen in Figure 9b.

To reduce these artifacts, for each reprojection that fails when com-
puting f̃(p) in (20) (i.e., �t-k-1(p + �i(t)) = ∅) we invoke the
procedural shader at the appropriate quadrant offset p+ �i(t). Con-
sequently, the shader may be evaluated from one to five times (Fig-
ure 9a) to improve rendering quality (Figure 9c). Fortunately these
troublesome regions tend to be spatially contiguous and thus map
well to the SIMD architecture of modern GPUs.

6 Accounting for signal changes

The preceding analysis and algorithm assume that the input signal
S does not change over time. However, it is often the case that
the surface shading does vary temporally due to, for example, light
and view-dependent effects such as cast shadows and specular high-
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Figure 10: Effect of the residual tolerance �� on the teapot scene, which has bump-mapped specular highlights and moving lights. Small
values of �� give too little weight to earlier estimates and lead to aliasing. Large values result in excessive temporal blurring when the shading
function varies over time, as evident in this close-up view. The full-scene difference images are shown at the top.

lights. In these cases it is possible to apply our supersampling tech-
nique to only the constant view- and light-independent layers and
evaluate the remaining portions of the shading at the native screen
resolution or with an alternative antialiasing technique. However,
providing a unified framework for antialiasing time-varying surface
effects is a worthy goal and we present a preliminary solution to
this problem in this section. We describe how to compute a lower
bound on � to avoid unwanted temporal blur in the case of shading
changes.

6.1 Estimating the residual

Detecting temporal changes in the shading requires estimating the
residual between our current shading estimate and its true value:

�t[p] = (S ∗G)t(p)− ft[p]. (22)

Since the correct value of (S ∗ G)t is naturally unavailable, we
would like to use the most current information st to estimate this
residual �̂t. However, since we expect st to be aliased (otherwise
we would not need supersampling), we must smooth this value in
both space and time. This corresponds to our assumption that al-
though St(p) may contain high-frequency spatial information, its
partial derivative with respect to time ∂St(p)/∂t is smooth over
the surface. In other words, we assume that temporal changes in
the signal affect contiguous regions of the surface evenly. When
this is not the case, our strategy for setting � will fail as discussed
in Section 8.

Let the buffers ek store the differences between the recent sam-
ples st-k[p] and the values reconstructed from the previous contents
of the subpixel buffers bi(t-k)[p] over the last K frames

ek[p] = st-k[p]− bi(t-k)[p], k ∈ {0, 1, 2, 3}. (23)

We temporally smooth these values by retaining at each pixel the
difference with the smallest magnitude

esmin[p] = ej [p] where j = arg min
k

∣∣ek[p]
∣∣, (24)

and obtain our final estimate of the residual by spatially smoothing
these using a box filter Br of radius r = 3:

�̂t[p] =
(
B3 ∗ esmin

)
[p] (25)

Note that this approach risks underestimating the residual. In other
words, when presented with the choice between aliasing or a slower
response to signal changes, our policy is to choose the latter.

6.2 Limiting the residual

Similar to our approach for limiting the degree of spatial blur, we
would like to establish a lower bound on � such that the residual
�̂t+1 in the next frame remains within a threshold ��. The choice of
�� controls the tradeoff between the degree of antialiasing and the
responsiveness of the system to temporal changes in the shading.

Following the derivation in the appendix, our strategy to adapt to
temporal changes is to replace (21) with

�t[p]← K max

(
1

Nt-1 + 1
, ��b(v), ���

)
, (26)

where
��� = 1− ��∣∣�̂t[p]∣∣ . (27)

At pixels where the shading is constant, �̂t is less than �� and �t
progresses according to the previous rules. When the residual in-
creases, the value of � also increases, shrinking the temporal win-
dow over which samples are aggregated and producing a more ac-
curate estimate of the shading. Figure 10 illustrates this tradeoff
between aliasing and temporal lag.

The selection of �� is closely related to the characteristic of the
shading signal. In our experiments, we simply select �� that
achieves the best PSNR. Alternatively, other numerical or visual
metrics can be used to limit both temporal lag and aliasing to ac-
ceptable amounts.

7 Results

Scenes We tested our algorithm using several expensive proce-
dural shaders with high-frequency spatial details that are prone to
aliasing. The brick scene combines a random-color brick pattern
with noisy mortar and pits. Bump mapping is used for the light-
ing. The horse scene includes an animated wooden horse galloping
over a marble checkered floor. The teapot consists of a procedural
Voronoi cell pattern modulating both the color and the height field.
The added rough detail is bump-mapped with specular highlights.

In addition to the basic scenes above, we show results for an indoor
scene that has a higher variety of shaders, dynamic elements, and
more geometric complexity. The scene consists of several proce-
durally shaded objects that altogether have over 100,000 triangles.
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Figure 11: PSNR comparison of our approach with traditional supersampling and jittered reprojection for the brick scene using real-time
animation sequences exhibiting different types of motion. The red line indicates the frame used in Figure 14.
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Figure 12: Additional PSNR comparisons of our approach with traditional supersampling and jittered reprojection. The horse is animated, the
teapot is dynamically lit, and the indoor scene is animated and dynamically lit. The red lines indicate the frames used in Figures 10 and 14.

These objects include bump-mapped brick walls, a shiny colored
bumpy sphere, a glistening uneven marble floor, a reflective stone-
bricked teapot, a fine-carved wooden box and a rusty metal exotic
creature. The animated scene from the accompanying video com-
bines several types of fast animation and camera motion, exhibit-
ing similar complexity to what one would expect in a typical game
scene. It also includes a rotating masked gobo light, which sheds
a procedurally generated pattern onto the scene objects. The fast
moving light and significant disocclusion caused by the fast motion
and complex geometry details makes the scene extremely difficult
to handle with traditional reprojection techniques. However, with
multiple subpixel buffers and adaptive evaluation, our method pro-
duces satisfying results.

Memory usage The depth values required by reprojection are
stored in the alpha channel of each subpixel buffer, which are 16-
bit RGBA. We store the variance reduction factorsNt[p] in an 8-bit
auxiliary buffer. For the teapot and indoor scenes, residuals for the
four subpixel buffers are stored in the four channels of one addi-
tional 8-bit RGBA buffer. A 1024×768 backbuffer consumes about
3MB, and our scheme uses an additional 27MB to supersample all
shaders in a scene.

Comparisons All results are generated using an Intel Core2
2.13GHz PC with 2GB RAM and an AMD HD4870 graphics board
at a screen resolution of 1024×768. We measure image quality us-
ing the peak signal-to-noise ratio (PSNR) with respect to a ground
truth image generated with 256 samples/pixel weighted as in Sec-
tion 4.1. We show comparisons between conventional rendering
(no antialiasing), our algorithm, and traditional 2×2, 3×3 and 4×4
stratified supersampling (performed on the GPU by rendering to a
larger framebuffer and then downsampling). In addition, we com-
pare to the basic reprojection method [Nehab et al. 2007; Scherzer
et al. 2007] that uses uniform jittered sampling, a single cached
buffer, and a value of � chosen to maximize PSNR.

Figure 14 compares our algorithm to these alternatives. Note that
standard rasterization is very efficient, but produces significant
aliasing, especially under motion (see accompanying video). Jit-
tered reprojection is also faster than our technique, but has infe-
rior quality because it lacks high-resolution estimates and does not
adapt � to limit blur. Our technique is also superior to traditional
2×2 and 3×3 stratified supersampling in terms of both rendering
speed and quality. Finally, note that our technique gives higher
PSNR when compared to 4×4 stratified supersampling in the ma-
jority of cases. The teapot from Figure 10 is the most challenging
scene due to the fact that it contains a procedural shader with a
high-frequency yet fast changing dynamic lighting component. As
a result, our method limits the effective number of samples it ag-
gregates to avoid temporal blurring, and this reduces the degree of
antialiasing. For the indoor scene in motion, we chose not to an-
tialias the gobo lighting computation to avoid excessive blurring of
the pattern (see Section 8). Note, however, that the moving specu-
lar highlights over the shiny objects (such as the teapot scene, the
sphere, floor and teapot in the indoor scene) at different scales are
still properly antialiased without introducing noticeable temporal
blur. This demonstrates that our technique can handle signals that
change with moderate speed and in a spatially correlated manner.
The indoor scene also shows the ability of our approach to preserve
antialiased details in the presence of complex and very dynamic
changes in occlusion. Overall, note that our algorithm is signifi-
cantly faster than 4×4 supersampling on all scenes (about 5–10×
faster depending on the relative amount of vertex and pixel process-
ing).

Figure 11 and 12 graph the rendering quality (in PSNR) of our
scenes for each of the techniques using different animation se-
quences. The red vertical lines denote the images shown in Fig-
ures 10 and 14. For the brick scene, Figure 11 demonstrates the
superior quality of our technique under different types of motion:
panning, rotation, and repeated magnification and minification. The



small oscillations in PSNR do not visibly affect rendering quality
as can be verified in the accompanying video. Figure 12 shows that
similar results are achieved for the other three test scenes, which in-
clude various different types of motion. Again, the accompanying
video shows animated versions of these results.

8 Limitations and future work

As with previous reprojection methods, our supersampling algo-
rithm results in a increase in the amount of vertex processing and
raster interpolation, as well as pixel shader computation. However,
this cost is negligible if the bottleneck lies in the pixel shader, which
is increasingly the case.

The work of Méndez-Feliu et al. [2006] makes the interesting point
that due to differences in the portion of the scene that is seen below
each pixel in adjacent frames, a technique based on multiple im-
portance sampling is required to obtain an unbiased estimator for
reprojected color. However, they note that the difference is negligi-
ble when reused frames are close to each other, as in our case.

The main limitation of our technique is that it cannot properly de-
tect and antialias arbitrary temporal changes in the shading such as
very fast moving sharp specular highlights and shadow boundaries,
as well as parallax occlusion mapping. These types of effects can-
not be accurately predicted by our reprojection framework because
they involve a signal that rapidly moves relative to the object sur-
face. However, we have provided numerous examples of our tech-
nique applied to the constant components in complex real-world
shaders (i.e., those that are independent of the view and light di-
rections) as well as slowly varying signals, such as the lighting in
the teapot and indoor scenes. Note, however, that any strongly dy-
namic “lighting” effects can be evaluated at the native screen reso-
lution independent of our technique. In the indoor scene, for exam-
ple, the fast moving gobo light computation was deferred to avoid
being severely blurred. Figure 13 shows a side-by-side compari-
son between amortized and native-resolution gobo lighting, clearly
demonstrating that temporally varying effects that result in such ex-
tremely fast changes in surface color cannot be properly handled by
our framework.

Extending our technique to handle a broader range of temporal ef-
fects is a clear direction of future work. We would also like to
investigate extending our algorithm to allow supersampling geom-
etry silhouettes in addition to the surface shading, and to allow the
efficient rendering of motion blur. Finally, we believe it would be
possible to modify the number of subpixel buffers over time in or-
der to achieve a target render quality or framerate.

9 Conclusion

Amortized supersampling is a practical scheme for antialiasing pro-
cedural shaders. A key challenge this paper addresses is to char-
acterize the spatial blur introduced by reprojection schemes that
involve repeatedly reconstructing intermediate values in a discrete
framebuffer. Based on this analysis, we introduced a principled ap-
proach for setting the smoothing factor in a recursive temporal filter
and demonstrated how the shading can be maintained at a higher
spatial resolution while still requiring roughly one shader invoca-
tion per pixel. We also introduced a method for handling temporally
varying shaders that is appropriate when the temporal derivative has
low spatio-temporal frequencies. We demonstrated the efficacy of
our approach compared to fixed stratified supersampling and naive
extensions of prior reprojection techniques.

Figure 13: Comparison between performing the gobo computation
(left) within our amortized framework, or (right) separately at the
native resolution. Note that it is necessary to defer computation of
such signals that move rapidly across the object surface.

References
ADELSON, S. J. and HODGES, L. F. 1995. Generating exact

ray-traced animation frames by reprojection. IEEE Computer
Graphics and Applications, 15(3):43–52.

APODACA, A. and GRITZ, L. 2000. Advanced RenderMan: Cre-
ating CGI for Motion Pictures. Morgan Kaufmann.

BADT, S. 1988. Two algorithms for taking advantage of temporal
coherence in ray tracing. The Visual Computer, 4(3):123–132.

BALA, K., DORSEY, J., and TELLER, S. 1999. Radiance inter-
polants for accelerated bounded-error ray tracing. ACM Trans-
actions on Graphics, 18(3):213–256.

BISHOP, G., FUCHS, H., MCMILLAN, L., and ZAGIER, E. J. S.
1994. Frameless rendering: Double buffering considered harm-
ful. In Proceedings of ACM SIGGRAPH 94, pages 175–176.

BROOKS VAN HORN III, R. and TURK, G. 2008. Antialiasing
procedural shaders with reduction maps. IEEE Transactions on
Visualization and Computer Graphics, 14(3):539–550.

CHEN, S. E. and WILLIAMS, L. 1993. View interpolation for im-
age synthesis. In Proceedings of ACM SIGGRAPH 93, pages
279–288.

COOK, R. L., CARPENTER, L., and CATMULL, E. 1987. The
REYES image rendering architecture. In Computer Graphics
(Proceedings of ACM SIGGRAPH 87), volume 21, pages 95–
102.

DAYAL, A., WOOLLEY, C., WATSON, B., and LUEBKE, D. 2005.
Adaptive frameless rendering. In Eurographics Symposium on
Rendering, pages 265–275.

EBERT, D. S., MUSGRAVE, F. K., PEACHEY, D., PERLIN, K.,
and WORLEY, S. 2003. Texturing and Modeling: A Procedural
Approach. Morgan Kaufmann, 3rd edition.

ERNST, M., STAMMINGER, M., and GREINER, G. 2006. Filter
importance sampling. In IEEE Symposium on Interactive Ray
Tracing, pages 125–132.
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Appendix: Detailed derivations

Derivation of (8) According to our definition,Nt is the variance
reduction factor that appears in (3), or intuitively the effective num-
ber of samples that have so far contributed to the estimate. Omitting
the dependency on p for simplicity:

1

Nt
=

Var(ft)

Var(f1)
=

Var
(
�tS + (1− �t)ft-1

)
Var(f1)

(28)

= �2
t

Var(f1)

Var(f1)
+ (1− �t)2 Var(ft-1)

Var(f1)
(29)

= �2
t + (1− �t)2 1

Nt-1
. (30)

Taking the reciprocal of both sides results in (8).

Derivation of (10) We choose to characterize the blur at each
pixel by the covariance matrix of the collection of weighted samples
that contribute to it:

V [p] =

[
Varx

(
�t[p]

)
Covxy

(
�t[p]

)
Covyx

(
�t[p]

)
Vary

(
�t[p]

) ]
, (31)

where �t[p] =
{
�t,i[p]

}n(t,p)

i=1
. The two eigenvalues �1 and �2

of V [p] correspond to the variances along the directions of mini-
mum and maximum variance. We use their average as our estimate
for the degree of blur:

�2
t [p] =

�1 + �2

2
= 1

2
Tr
(
V [p]

)
(32)

= 1
2
Varx

(
�t[p]

)
+ 1

2
Vary

(
�t[p]

)
. (10)

Derivation of (11) We first perform the derivation in 1D and
then extend it to the 2D case. At time t, the value of a pixel is given
by the weighted sum of a set of samples. We can represent each
sample in the set by a pair carrying its weight and displacement:

Ft =
{

(!t,i, �t,i)
}n(t)

i=1
. (33)

Here, the displacements �t,i are relative to the pixel center and the
weights !t,i sum to one. To simplify notation let us define two
operations:

a⋅Ft =
{

(a!t,i, �t,i)
}n(t)

i=1
, Ft+b =

{
(!t,i, �t,i+b)

}n(t)

i=1
, (34)



which scale all of the weights or translate all of the displacements
by an equal amount, respectively. If we ignore the effect of jittering
and assume constant panning motion, then every pixel will contain
the same set Ft. Furthermore, using (4) and assuming linear resam-
pling, Ft can be written in terms of Ft-1 at neighboring pixels:

Ft = � ⋅ {(1, 0)} ∪ (1-�) ⋅
(
a ⋅ (Ft-1 + b) ∪ (c ⋅Ft-1 +d)

)
, (35)

where

a = 1− v, b = −v, c = v, d = 1− v. (36)

Note that in (35) all samples are of the form(
� (1-�)j+kajck, j b+ k d

)
. (37)

Furthermore, for large enough t, each one appears
(
j+k
j

)
times. We

can now rephrase the problem using probability theory and take
advantage of several mathematical tools [Hogg and Tanis 2001].
First, let Xt be a random variable that takes on values in the set
{�t,i}n(t)

i=1 , with a probability mass function (p.m.f.) proportional to
the corresponding weights !t,i. Our goal is to compute Var(X),
where X = limt→∞Xt. This can be accomplished by computing
the first and second moments of X . The p.m.f. is given by

P (X = j b+ k d) =
(
j+k
j

)
�(1-�)j+kajck. (38)

Let MX(u) denote the moment-generating function of X:

MX(u) = E
(

lim
t→∞

euXt
)

(39)

=

∞∑
j=0

∞∑
k=0

(
j+k
j

)
�(1-�)j+kajckeu(jb+kd) (40)

=

∞∑
q=0

q∑
j=0

(
q
j

)
�(1-�)qajcq-jeu(jb+(q-j)d) (41)

= �

∞∑
q=0

(
(1-�)(a eub + c eud)

)q (42)

=
�

1− (1-�)(a eub + c eud)
. (43)

This function can be used to compute the desired moments:

�X = E(X) = M ′X(0) =
(ab+ cd)�(1-�)(

1− (1-�)(a+ c)
)2 (44)

�2
X + �2

X = Var(X) + �2
X = M ′′X(0)

=
(ab2 + cd2)�(1-�)(
1− (1-�)(a+ c)

)2 +
2(ab+ cd)2�(1-�)2(
1− (1-�)(a+ c)

)3 . (45)

The introduction of sample jittering simply adds a Gaussian random
variable G to X . Since Var(X +G) = Var(X) + Var(G), we
can substitute (36) into (44–45) to obtain

�v = 0 (46)

�2
v = �2

G +
1− �
�

v (1− v). (47)

Extending this result to 2D requires two modifications. First, the
fractional velocity v and offsets �t,i become 2D vectors. Second,
(35) now contains four terms with Ft-1, corresponding to the four
pixels involved in bilinear resampling. Because the bilinear weights
are separable in vx and vy , we can consider the x and y components
of these moments separately, and the respective sample sets reduce
to the 1D case in (35). Therefore, we can use (47) and (10) to
reach (11).

Beyond linear resampling The analysis leading to (44–45)
applies without modification to the more sophisticated resam-
pling scheme of Section 5.1, if we restrict ourselves to a simple
round-robin update sequence in one dimension (with two subpixel
buffers). The weights a, c and offsets b, d then become:

b = frac(2v + 1/2)− 1/2 d = frac(v)− 1/2 (48)
a = ā/(ā+ c̄) c = c̄/(ā+ c̄), where (49)
ā = max(0, 1− 2∣b∣) c̄ = max(0, 1− 2∣d∣), (50)

with frac(x) = x − ⌊x⌋. Substituting (48–49) into (44–45) intro-
duces three complications not previously present in (46–47): (i) the
fact that (45) is a cubic makes it inconvenient to obtain an explicit
solution for � given a bound �b on the variance of the sample dis-
tribution; (ii) since ab + cd is generally nonzero, the mean of the
sample distribution is also nonzero (and this is the source of the
drift in Figure 6); (iii) the weights a, c are no longer separable, so
the extension to 2D would result in expressions for the x and y com-
ponents of the moments that depend on both components vx and vy
of the velocity vector.

In addition, our use of an irregular update sequence (Section 5.2)
invalidates the simple recurrence in (35) altogether. Therefore as
explained in the text, we instead precompute a numerical table in
an off-line preprocess.

Derivations of (18) and (19) For the sums in (16) and (18) to
be equal, the weights associated to each value bi(t-k-1)

[
⌊pk⌋+ Δ

]
must be the same. This leads to a system of equations for each ok:⎧⎨⎩

(1− okx)(1− oky ) = wk,(00)
/wk = �k,0 ⋅ k,0

(1− okx) oky = wk,(01)
/wk = �k,0 ⋅ k,1

okx (1− oky ) = wk,(10)
/wk = �k,1 ⋅ k,0

okx oky = wk,(11)
/wk = �k,1 ⋅ k,1

. (51)

Note that both sides add up to one, and recall that the tent fil-
ters are axis-aligned and separable, which allows us to factor the
weights wk,Δ into products � ⋅  as shown above. Therefore there
exists a unique solution to each of these systems, given by (19).

Derivation of (27) The residual in the next frame is equal to

�̂t+1[p] ≈ st+1[p]− ft+1[p] (52)

= st+1[p]−
(
(�)st+1[p] + (1− �)ft[p]

)
(53)

≈ st+1[p]− (�)st+1[p]− (1− �)
(
st[p]− �̂t[p]

)
(54)

= (1− �)
(
st+1[p]− st[p]

)
+ (1− �)�̂t[p]. (55)

Here we do not attempt to predict the additional residual introduced
due to future signal changes, so we set st+1[p] = st[p] in (55). This
leads to the relation

�̂t+1[p] ≈ (1− �)�̂t[p]. (56)

Requiring ∣�̂t+1∣ to be smaller than ��, we reach

� > ��� = 1− ��∣∣�̂t[p]∣∣ . (27)



HORSE SCENE

Reproj mov (88fps, 22.72dB) Reproj still (88fps, 26.30dB) Ours mov (64fps, 30.54dB) Ours still (64fps, 40.04dB)

No AA (140fps, 15.68dB) 2×2 SS (37fps, 22.22dB) 3×3 SS (19fps, 24.62dB) 4×4 SS (11fps, 25.50dB) Reference

BRICK SCENE

Reproj mov (113fps, 25.52dB) Reproj still (113fps, 28.70dB) Ours mov (84fps, 31.96dB) Ours still (84fps, 35.11dB)

No AA (166fps, 21.82dB) 2×2 SS (35fps, 26.54dB) 3×3 SS (17fps, 28.71dB) 4×4 SS (9.8fps, 29.72dB) Reference

INDOOR SCENE

Reproj mov (92fps, 27.27dB) Reproj still (92fps, 31.24dB) Ours mov (52fps, 33.93dB) Ours still (52fps, 38.37dB)

No AA (112fps, 24.79dB) 2×2 SS (35fps, 30.33dB) 3×3 SS (17fps, 32.38dB) 4×4 SS (10fps, 33.26dB) Reference

Figure 14: Comparison between our approach, no antialiasing, stratified supersampling, and jittered reprojection.


