
Distributed Gradient-Domain Processing
of Planar and Spherical Images

MICHAEL KAZHDAN
Johns Hopkins University

DINOJ SURENDRAN and HUGUES HOPPE
Microsoft Research

Supplemental Material:
Serializability of the distributed solver
To prove that our method provides a correct implementation of a
Gauss-Seidel solver, we need to show that though we implement the
relaxations in a parallel manner, there exists a serial Gauss-Seidel
implementation that achieves the same results.

This requires demonstrating that for each of the 1≤ i≤ k relaxation
updates, there is an indexing σi of pixels such that whenever the i-th
relaxation at pixel p depends on the value at pixel q, then pixel q
must have already been updated i times if σi(q) < σi(p), and pixel
q must have been updated (i−1) times if σi(q)≥ σi(p).

We begin with a description of the indexing that would serialize our
Gauss-Seidel relaxation if we allowed the synchronizations to occur
after each row is updated, and then describe how this indexing can
be extended to support our solver which only synchronizes once per
window advancement.

Serializability of a simple distributed solver

In the simplest implementation we can sweep through the entire row
starting at one end of the band and terminating at the other (moving
left-to-right on even rows and right-to-left on odd rows.) Before
completing the update of the band, we synchronize the data with
the neighbors and then complete the processing of the row. We
then proceed to the row two above, and repeat the same process,
continuing until we have updated k rows.

Whether we process an even row or an odd row for the k-th time, it
is always the case that as we start the processing, pixels in the two
rows above will have already been updated exactly k times, and
pixels in the current row and the two rows below will have been
updated (k− 1) times. (This property is guaranteed by temporal
blocking).

Furthermore, for even rows, it is generally the case that as we up-
date the pixels in a row for the k-th time, the pixels to the left have
been updated k times and the pixels to the right have been updated
(k− 1) times. This property is only violated near the right bound-
ary where the pixels that we read from the right buffer region will
already have been updated k times. (A symmetric situation occurs
in the processing of the odd rows.)

Thus, the distributed relaxations can be serialized through an in-
terleaved and boustrophedonic ordering. Assuming P processors,
each with bands of width W , this ordering is defined by setting the
index of the (x,y)-th pixel in the p-th band to:

σ(x,y, p) =
{

W ·P · y+(P · x+ p) if y is even
W ·P · y+W ·P−1− (P · x+ p) if y is odd

An example of this indexing for P = 4, W = 5 is shown in Figure 1.

Serializability of our distributed solver

What makes our solver more complicated is that we only perform
one synchonization as we process the k rows. This requires the
different updates to start and end their relaxations at different off-
sets from the band boundaries, with the i-th relaxation beginning its

Figure 1: The basic interleaved and boustrophedonic ordering used
to serialize our Gauss-Seidel relaxation.

Figure 2: The shifted, interleaved, and boustrophedonic ordering
used to serialize iteration k−1 in our Gauss-Seidel relaxation.

updates 2(k− i) pixels before the start of the band and ending its
updates 2(k−1) pixels before the end. As a result our serialization
requires defining a different indexing function σi for each of the
1≤ i≤ k relaxation updates.

Note that the use of a lane-based solver does not affect the indexing
as it is always the case that when updating a pixel in row (l +2) for
the (i+1)-st time its neighbors in row l have already been updated
i times, even if the remaining pixels in row l have not.

Thus, we serialize our processing by adapting the indexing σ to the
i-th iteration, defining the indexing σi by offsetting the indexing of
pixels in the even rows by 2(k− i) indices to the left, and shifting
the index of pixels in the odd rows by 2(k− i) indices to the right.

As a result, for the last of the k Gauss-Seidel iterations, the indexing
will remain unchanged, σk = σ . However, for earlier iterations, the
indexing will resemble the original indexing σ alternatively shifted
to the left and to the right, with the size of the shift increasing for
earlier updates. An example for i = k−1 is shown in Figure 2.


