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Gradient-domain processing is widely used to edit and combine images.
In this paper we extend the framework in two directions. First, we adapt
the gradient-domain approach to operate on a spherical domain, to en-
able operations such as seamless stitching, dynamic-range compression,
and gradient-based sharpening over spherical imagery. An efficient stream-
ing computation is obtained using a new spherical parameterization with
bounded distortion and localized boundary constraints. Second, we design a
distributed solver to efficiently process large planar or spherical images. The
solver partitions images into bands, streams through these bands in parallel
within a networked cluster, and schedules computation to hide the neces-
sary synchronization latency. We demonstrate our contributions on several
datasets including the Digitized Sky Survey, a terapixel spherical scan of
the night sky.
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1 Introduction
Over the last decade, gradient-domain approaches have become in-
creasingly prevalent for image processing in computer graphics and
vision [Agrawal and Raskar 2007]. The basic strategy is to extract
gradient fields from one or more images, modify the gradient val-
ues, and find the new image that best approximates the desired gra-
dients. The least-squares solution of this over-constrained problem
is obtained by solving a Poisson equation.

Many practical applications of gradient processing have been
demonstrated, including removal of light and shadow effects [Horn
1974; Finlayson et al. 2002], reduction of dynamic range [Fattal
et al. 2002; Weyrich et al. 2007], creation of intrinsic images [Weiss
2001], image stitching [Pérez et al. 2003; Agarwala et al. 2004;
Levin et al. 2004], removal of reflections [Agrawal et al. 2005],
gradient-based sharpening [Bhat et al. 2008], and most recently in-
teractive authoring [McCann and Pollard 2008; Orzan et al. 2008].

Our work extends the framework of gradient-domain image pro-
cessing in two directions:

Spherical domains. Prior techniques operate on Euclidean do-
mains such as planar and cylindrical geometry, yet many images
are inherently spherical, such as panoramas [Shum and Szeliski
2000], planetary surfaces [Google 2008; Microsoft 2008], and en-
vironment maps. We adapt the gradient-domain methodology to
support the processing of spherical imagery. Our solution involves
a new spherical parameterization, the periodic quincuncial (PQ)
map, which has horizontal periodicity and bounded area distortion.
These properties let us design a streaming multigrid solver whose
boundary constraints are local to the stream front, and which con-
verges in a small number of Gauss-Seidel iterations. We demon-
strate gradient-domain operations on several examples (Section 4).

Distributed solver. Solving the Poisson equation over a large
image can require significant computation and I/O, especially if the
image does not fit in memory. We enable efficient parallel process-
ing over large image domains by developing a distributed solver.
Bands of the image are assigned to nodes in a computer cluster and
processed in parallel. The network latency required to synchronize
data across bands is masked behind computation. A unique aspect
of our solver is that it handles images whose sizes exceed the ag-
gregate memory of the cluster, because each distributed process still
operates in a streaming fashion. We show significant speedups for
gigapixel-size images now common on the Internet (Section 6).

To further showcase these two contributions, we combine them to
address the problem of stitching images from the Digitized Sky
Survey [DSS 2007]. The survey comprises 1790 individual 529-
megapixel color plates acquired from two telescopes over more
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Fig. 1. Gradient-domain stitching of a terapixel panorama of the spherical night sky (viewed with gamma adjustment for printability). (a) Due to differences
in exposure, simple juxtaposition of the photographic plates results in undesirable seams. (b) Using our distributed spherical Poisson solver, the gradients
across the plate boundaries can be set to zero, resulting in a seamless spherical panorama.

than a decade (Figure 1). Together these overlapping plates form
a terapixel, spherical image. However, significant exposure differ-
ences among the plates result in undesirable discontinuities. To
eliminate these seams, our method solves a gradient-domain image
problem with 3.3 · 1012 degrees of freedom in 9 hours on a 16-node
computer cluster (Section 7).

2 Related work
Spherical images. Traditional equirectangular parameteriza-

tions for spherical imagery can lead to sampling and continuity
issues near the poles (Figure 2). To create spherical panoramas
from photographs, Szeliski and Shum [1997; 2000] resample these
into cube maps, and reduce seam discontinuities by applying a
feathering algorithm. However, such feathering can lead to blur-
ring or ghosting. By leveraging more recent, gradient-based tech-
niques, we can remove seams more effectively. To our knowledge,
gradient-domain approaches have not previously been applied to
spherical domains.

Gradient-domain solutions on large images. Agarwala [2007]
shows that for the application of gradient-based image stitching,
the associated Poisson equation can be discretized adaptively along
the stitching boundaries using a quadtree structure to yield good
approximate solutions. Kazhdan and Hoppe [2008] solve the 2D
Poisson equation efficiently using a multigrid V-cycle by inter-
leaving its computations into two streaming passes on out-of-core
data. McCann [2008] points out that the 2D Poisson equation can
be solved exactly using the Fourier analysis and cyclic reduction
(FACR) method [Press et al. 2007], which can be implemented in
two streaming passes, with four times the temporary storage. We
chose to base our distributed solver on a multigrid approach be-
cause it is more efficient and involves less network communication.

Parallel and distributed multigrid solvers. There is signifi-
cant work on multigrid solvers for multiprocessors and computer
clusters. An excellent recent survey is that of Chow et al. [2005].
For our case of structured grids, a common approach is multi-color

Fig. 2. Close-ups of the South Pole in Google Earth, Virtual Earth, and
Google Sky, showing either distortions or a “white cap”.

(e.g. red-black) Gauss-Seidel relaxation, which allows parallel up-
dates of independent grid elements [Briggs et al. 2000]. Wallin
et al. [2006] improve caching efficiency by applying the coloring
scheme to slices in a temporally blocked solver, and exploiting the
shared cache of a chip multiprocessor. These approaches assume
that the grid fits in the memory of a single machine.

Larger grids are typically partitioned into blocks that are solved on
separate cluster nodes. One challenge in domain decomposition is
to reduce the communication cost necessary to synchronize the data
after each pass of Gauss-Seidel relaxation. Moreover, the simple
approach of performing relaxation on all blocks independently cor-
responds to a block-Jacobi scheme and often results in poor solu-
tion convergence [Chow et al. 2005]. Adams [2001] improves con-
vergence using a multi-colored block decomposition with Gauss-
Seidel updates across blocks. Stookey et al. [2008] solve overlap-
ping blocks independently and spatially blend the resulting approx-
imations; because their problem involves hard constraints on a uni-
form subset of pixels, the Laplacian has local influence.

Our approach is to partition the image domain into bands, which
the processors stream in lockstep. Similar to [Wallin et al. 2006],
we improve cache friendliness by using temporal blocking, and
like [Adams 2001] we hide network latency by introducing buffer
regions and carefully scheduling computation. A unique aspect of
our system is that it is both streaming and distributed at the same
time, and therefore it is able to efficiently handle problems whose
data sizes exceed the aggregate memory of the cluster.

3 Review of gradient-domain processing

In gradient-domain image processing, an application specifies de-
sired color values and color differences, and the system solves for
the image that best fits these constraints.

Formally, for each image color channel, one provides a vector field
V : Ω ⊂ R2 → R2 specifying the desired gradients of an image,
a scalar field W : Ω ⊂ R2 → R specifying the desired values, and
an interpolation weight α , and the system solves for the function
U : Ω→ R that best fits the constraints:

min
U

∫
Ω

‖∇U−V‖2 +α (U−W )2.

Using the Euler-Lagrange equation, this minimization is equivalent
to solving the screened Poisson equation [Bhat et al. 2008]:

(∆−α)U = ∇ ·V − α W .
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Finite-element discretization. To make the solution tractable,
the equation is transformed into a finite-dimensional system by
only considering solutions within an N-dimensional subspace of
functions spanned by elements Bi(p) (with 1 ≤ i ≤ N). We let the
elements Bi be second-order bivariate B-splines centered on a reg-
ular grid [Christara and Smith 1997; Kazhdan and Hoppe 2008].

In this space, the problem of solving for the function U trans-
forms into that of finding the coefficients {ui} such that the
function U(p) = ∑uiBi(p) minimizes the fitting error. Using the
Galerkin formulation, this leads to the linear system Lu = f where
u = (u1 . . .uN)T is the vector of coefficients, L is the discretized
screened Laplacian, and f = ( f1 . . . fN)T are the constraints:

Li, j =−
∫

Ω

(∇Bi)
T

∇B j +α Bi B j

fi =−
∫

Ω

(∇Bi)
T V +α Bi W .

(1)

4 Spherical gradient-domain processing

To extend traditional image processing techniques to spherical im-
agery, we define a method for fitting an image to local constraints
defined over the sphere. The challenge in doing this is defining the
linear system that relates the constraints to the image.

We first formulate the problem directly on the sphere, then work
toward a practical solution using a parameterization of the sphere
onto a planar domain, and finally discuss our construction of the
spherical parameterization and its impact on a multigrid solver.

4.1 Direct formulation on the sphere

Similar to the planar case, gradient-domain image processing can
be performed when the image is defined over the sphere. The user
provides a vector field V̆ : S2→ T S2 specifying the desired spheri-
cal gradients of an image, a scalar field W̆ : S2→ R specifying the
desired values, and an interpolation weight α , and the system finds
the best-fitting function Ŭ : S2→ R:

min
Ŭ

∫
S2
‖∇Ŭ−V̆‖2 +α (Ŭ−W̆ )2. (2)

As in the planar case, the function Ŭ minimizing the error is ob-
tained by solving the screened Poisson equation:

(∆−α)Ŭ = ∇ ·V̆ − α W̆ ,

where ∆ is the Laplace-Beltrami operator which accounts for the
geometry of the sphere.

Finite-element discretization. Once again, the solution is made
tractable by defining an N-dimensional subspace of spherical func-
tions spanned by the elements B̆i(p) : S2→ R and solving the sys-
tem Lu = f for the coefficients of Ŭ , with:

Li, j =−
∫

S2

(
∇B̆i

)T
∇B̆ j +α B̆i B̆ j

fi =−
∫

S2

(
∇B̆i

)T V̆ +α B̆i W̆ .

(3)

4.2 Pulling back to a planar domain
To compute the linear system coefficients in Equation 3 we would
have to choose a parameterization Φ : Ω ⊂ R2 → S2 and compute
the integrals by (1) pulling back the finite elements and the con-
straint function to the parameterization domain and (2) applying
the inverse of the push-forward map to transform the spherical vec-
tor field to a planar one.

Formally, denoting the Jacobian matrix of Φ by JΦ = (Φx Φy), set-
ting Bi = B̆i ◦Φ and W = W̆ ◦Φ to be the pull-back functions, and
setting V = J−1

Φ
V̆ to be the vector field on the planar domain whose

push-forward is the constraint vector field, the integrals become:

Li, j =−
∫

Ω

(
∇BT

i

(
JΦJT

Φ

)−1
∇B j + α Bi B j)

)
‖Φx×Φy‖

fi =−
∫

Ω

(
∇BT

i V +α Bi W
)
‖Φx×Φy‖ .

(4)

Defining the system in this manner is the correct approach as it de-
fines the screened Poisson equation in terms of the intrinsic spher-
ical geometry and is independent of the parameterization Φ. How-
ever, it results in an inhomogeneous system of equations, where
the stencils in the rows of matrix L contain spatially varying coef-
ficients. The coefficients themselves are expensive to compute as
they involve integrals, and moreover these integrals cannot be ex-
pressed in closed form for many parameterizations.

In this work, we instead resort to a non-intrinsic implementation in
which we calculate the integrals directly in the planar domain, as in
Equation 1. This presents concerns, since we only have∫

S2

(
∇B̆i

)T
∇B̆ j =

∫
Ω

(∇Bi)
T

∇B j

when Φ is angle-preserving (conformal). And we only have∫
S2

B̆iB̆ j =
∫

Ω

BiB j

when Φ is area-preserving. Since there is no parameterization that
simultaneously preserves both angle and area (i.e. that is isometric),
any non-intrinsic implementation must introduce some error.

Our strategy is to define a low-distortion parameterization, which
compromises a small amount of accuracy for significantly im-
proved performance. We will show that such an implementation
gives rise to a solver that is significantly faster, while still generat-
ing images that are perceptually similar to the intrinsic solutions.

4.3 Choosing a spherical parameterization
The spherical parameterization should have low distortion to re-
duce the approximation error of our non-intrinsic system. Fortu-
nately, this goal of minimal distortion is shared by many graphics
and visualization applications. With too much area distortion, some
surface regions are inevitably undersampled relative to others. And,
with too much angle distortion (e.g. near the poles in any cylindri-
cal projection), texture mapping requires costly anisotropic filtering
to compensate for the poorly behaved surface parameterization.

The Digitized Sky Survey dataset in WorldWide Telescope [WWT
2008] is sampled using a so-called “tessellated octahedral adaptive
subdivision transform” (TOAST) parameterization. It is defined as
the composition of two simple maps:
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(1) An octahedron is mapped to a sphere by recursive spherical
subdivision (Figure 3a-b). This map is used in a number of applica-
tions in graphics [Fekete 1990; Schröder and Sweldens 1995] and
astronomy [Kunszt et al. 2001]. The map is not differentiable, but
provides a nice sample distribution over the sphere.

(2) The octahedron is projected into its equatorial plane to form a
double-sided square, and the bottom side of this square is unfolded
quincuncially (Figure 3c-d). Although this projection is not isomet-
ric, the samples of the subdivided octahedron map one-to-one with
a 2D grid [Praun and Hoppe 2003].

For our purposes, however, the topology of the square’s boundaries
prevent a streaming solver. Our solution is to introduce a final step:

(3) The top half of the square is pivoted by 180◦ to form a rectangle
domain whose width is four times its height (Figure 3e).

We refer to this result as the periodic quincuncial (PQ) parame-
terization. It is a map of the sphere onto a rectangle domain, with
periodic boundary conditions in the horizontal directions, reflective
boundary conditions along the top row, and twice-reflective bound-
ary conditions in the bottom row. The crucial property is that all
boundary constraints are local to a small window of rows in this
rectangular domain. As shown in Figure 4, each row of the rect-
angle domain maps to a closed loop on the sphere, starting from a
doubly covered 180◦ great arc (red), and ending at another doubly
covered 180◦ great arc (orange).

Choice of Spherical Map. In developing a multigrid solver for
spherical imagery, we have opted for the PQ parameterization be-
cause it has bounded area and and angle distortion and because it is
well-suited to a streaming and distributed solver.

Although parameterizations such as HEALPix [Górski et al. 2005]
and the rhombic-dodecahedron [Fu et al. 2009] have better distor-
tion bounds (Figure 5) and can also be used to define efficient multi-
grid solvers (Table I), they are not suitable choices for streaming
and distributed implementations. The limitation of both these pa-
rameterizations is that the quad-mesh over which they parameter-
ize the sphere has vertices with odd valence, resulting in an angle
defect that is a multiple of π/2. As a consequence, the neighbors of
pixels within a stream-row may reside along a perpendicular col-

Fig. 3. The periodic quincuncial (PQ) parameterization is formed by map-
ping the sphere to an octahedron, a double-sided square, a larger square, and
finally a rectangle with horizontal periodicity. The colored arrows indicate
stitching boundaries in the domain.

Fig. 4. Two views of the PQ spherical parameterization, showing how the
domain grid maps to the sphere. The top and bottom boundaries map to
doubly covered great arcs. The blue lines indicate the rows traversed by our
streaming solver.

Fig. 5. In an equirectangular (ER) spherical map, area and anisotropic
distortion are unbounded, whereas both these measures are bounded in
the HEALPix (HP), rhombic-dodecahedron (RD), and periodic-quincuncial
(PQ) parameterizations. (Differential area is the determinant of the Jacobian
and anisotropy is the ratio of its singular values, so values of one correspond
to no distortion.)

umn that is not contained within the working memory. In contrast,
for our PQ parameterization, all extraordinary vertices have even
valence, so the angle defect is a multiple of π , and the neighbors
of a pixels within a stream-row always reside within an adjacent
stream-row (though possibly with flipped orientation).

4.4 Adapting a planar multigrid solver
Using the PQ parameterization it is straightforward to adapt finite-
element solvers to the processing of images over the sphere. Since
a d-th order B-spline is supported within a radius of (d+1)/2, per-
forming a restriction, prolongation, and Gauss-Seidel relaxation
only requires access to pixel values within a small neighborhood
(never larger than d). Since our implementation uses second-order
B-splines, the processing of the pixels at a distance of more than
two pixels from the parameterization boundary is unchanged.

As Figure 3e indicates, near the left and right boundaries process-
ing must be adapted to support periodic boundary conditions, and
near the top and bottom boundaries processing must be adapted to
support reflective boundary conditions. Specifically, for an image
of resolution W ×H, with W = 4H, the mapping is:

(i, j) 7→


(W -1-ĩ, - j) if j < 0

(W/2-1-ĩ,2H-1- j) if j ≥ H and i < W/2
(3W/2-1-ĩ,2H-1- j) if j ≥ H and i≥W/2

(ĩ, j) otherwise,

where ĩ = i mod W .

The PQ parameterization has the desirable property that the two-
ring neighborhood of pixel (i, j) always gets mapped into a set
of pixels that are within rows [ j-2, j+2]. Thus, a streaming solver
needs to maintain only a small window of image rows as it streams
through the image, allowing for the gradient-domain processing of
spherical imagery that is larger than working memory.
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4.5 Evaluation

To evaluate the quality of our periodic quincuncial (PQ) parameter-
ization for spherical gradient-domain processing, we compare our
results to those obtained using an intrinsic solver defined over an
equirectangular (ER) parameterization.

We chose the ER parameterization because the associated metric
tensor remains constant over the parallels of the sphere. As a re-
sult, defining the intrinsic system only requires that a new stencil
be computed once per image row, rather than once per pixel. Note
that though efficient to set up, the inhomogeneous nature of the sys-
tem results in slow convergence, as shown in Table I. Consequently,
we have only found this system to be effectual for establishing the
baseline intrinsic solution, a context in which the solver can be al-
lowed to run to completion and efficiency is not a concern.

Figure 6 shows results of our comparison for two different applica-
tions. For each evaluation, the columns show the original spherical
image, the result obtained with the intrinsic ER solver and with our
non-intrinsic PQ parameterization, and the error, magnified fivefold
and visualized as darker regions on an off-white sphere.

Ground truth. We extract the gradient field of an image and test
that both solvers accurately integrate the gradients to get back the
original image (up to DC term). For the intrinsic solver, gradients
are computed over the sphere, for our non-intrinsic solver gradients
are computed over the parameterization domain. Note that since the
two parameterizations sample the sphere at different points, the PQ
solution had to be resampled to compare it against the ER solution,
and small sampling errors can be seen, particularly in regions of
high frequency detail.

Since the initial image is the correct solution we can also measure
the performance by comparing the results of the solvers with the
original. It is precisely these errors that are described in Table I.

Image stitching. We split the sphere with random great cir-
cles, perturbing half of the spherical image through brightening or
gamma correction, and solve the Poisson equation to get back a
seamless image. Constraints are defined by compositing gradients
from the partitions and setting the seam-crossing gradients to zero.

Table I. Comparison of solver convergence using
different spherical parameterizations

V-Cycles 1 2 3 4

ER
RMS 6.7·10−03 4.6·10−03 3.5·10−03 2.9·10−03

Max 2.1·10−01 1.7·10−01 1.6·10−01 1.5·10−01

HP
RMS 2.6·10−04 1.3·10−06 7.5·10−09 4.4·10−11

Max 8.9·10−04 3.0·10−06 1.5·10−08 8.1·10−11

PQ
RMS 6.1·10−05 1.1·10−07 1.9·10−10 2.6·10−12

Max 8.1·10−04 1.4·10−06 2.5·10−09 8.2·10−12

Convergence of the intrinsic equirectangular (ER) solver compared with
that of the non-intrinsic HEALPix (HP) and periodic-quincuncial (PQ)
solvers, measured as rms and max solution error. (Since the base mesh
for the rhombic-dodecahedron parameterization is identical to that of
HEALPix, it defines the same finite-element system with identical con-
vergence properties.)

(a) Input (b) Intrinsic (c) Non-intrinsic (d) Error (×5)

RMS = 2/256
(1) Ground truth reconstruction (no gradient modification)

RMS = 2/256

RMS = 2/256
(2) Image stitching by setting cross-boundary derivative to zero

RMS = 3/256

RMS = 4/256
(3) Gradient-based sharpening (screened Poisson equation)

Fig. 6. Comparison of gradient-domain processing results using the costly
intrinsic solution and our non-intrinsic approach. For visualization pur-
poses, the difference is magnified 5 times.

Gradient sharpening. We constrain the solvers to simultane-
ously preserve the original color values and magnify the gradients.
For input image I, this is done by setting the constraint values to the
original image (W = I and α > 0) and setting the constraint vector
field to the amplified gradients (V = β∇I with β > 1) in Equation 2.

As Figure 6 shows, the low distortion of the PQ parameterization
permits the non-intrinsic solver to attain results similar to the more
expensive intrinsic solution. The greatest discrepancy arises in gra-
dient sharpening, where the balancing of value and gradient con-
straints is known to be frequency-dependent [Bhat et al. 2008] and
hence sensitive to the parametric distortions. But even in this case
the error is primarily low-frequency, due to the bounded distortion
of the parameterization, making the errors barely perceptible.

5 Review of streaming multigrid
The implementation of our solver (Section 6) builds on the stream-
ing multigrid algorithm introduced by Kazhdan and Hoppe [2008],
which we briefly summarize here. Using second-order elements, a
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sufficiently accurate image solution is achieved in a single multi-
grid V-cycle, implemented as two sequential streaming passes over
the data. The first pass is the restriction phase, in which the sys-
tem is relaxed at finer resolutions and the residual is successively
passed on to coarser resolutions for further processing. The second
pass is the prolongation phase, in which the correction term from
coarser resolutions is successively incorporated back into the finer
resolutions and the system is further relaxed. The key components
of the streaming multigrid solver are as follows.

Streaming Gauss-Seidel relaxation. Gauss-Seidel relaxation
over the image is implemented as a streaming computation by
maintaining a short window of pixel rows in working memory. As
the stream is advanced, the pixels in the front row of the window
are read in from disk, the pixels in the center row are relaxed, and
then the pixels in the back row are written out to disk. Since a
second-order stencil is used, relaxing the value at pixel (i, j) only
requires access to the pixel values in the two-ring neighborhood
[i− 2, i + 2]× [ j− 2, j + 2], and a single relaxation of all the pixel
values is performed in a working memory size of five rows.

Streaming multiple iterations of relaxation. To perform k
successive Gauss-Seidel relaxations, the streaming computation is
modified so that after reading row j into the front of the window,
pixels in row j−2 are relaxed, followed by pixels in row j−4, all
the way through pixels in row j−2k. The pixels in row j−2k−2
are then written back out to disk and the stream is advanced. Thus,
by maintaining a window of 2k + 3 rows, a sequence of k succes-
sive Gauss-Seidel relaxations is performed in a single streaming
pass through the image data.

Streaming the multigrid solver. The complete multigrid solver
interleaves the relaxations of the different resolutions. As pixel up-
dates are finalized at one resolution they are directly transferred into
the next resolution, either as the restricted residual for the coarser
resolution problem or as the prolonged correction term for the finer
resolution. All inter-resolution data transfers occur via memory
rather than disk I/O. The streams at the different resolutions are
advanced synchronously, with each finer resolution advancing two
rows for each row at the next-coarser resolution.

6 Distributing the streaming multigrid solver
The streaming solver of Kazhdan and Hoppe [2008] works on
large, out-of-core images. However, due to limits on CPU and disk
throughput, it requires about 90 minutes to process a 3.3-gigapixel
panorama. By parallelizing this computation over multiple threads
and processors, we significantly reduce this computation time. In
addition, distributing the computation allows scaling to terapixel
images, where the streaming window (spanning across more than a
million pixels) would no longer fit into the cache of a single CPU.

Our distributed solver operates over many processors in a computer
cluster. Each node of the cluster generally contains a few proces-
sors (e.g. 4 processors in a quad-core node), which access the same
cache and memory. However, processors on different nodes do not
share memory, and must communicate over a local network.

To reduce inter-processor communication, we exploit the fact that
updates to the solution performed within a Gauss-Seidel relaxation
only affect the computation of adjacent pixels. Our approach is to
partition the image domain into contiguous bands, assign the bands
to different processors, and have each processor compute its com-
ponent of the overall solution (Figure 7).

Fig. 7. Our solver decomposes the 2D image domain into vertical bands,
assigns the bands to different processors, and lets all processors stream
through the rows in lockstep.

Fig. 8. We further decompose each image band into three lanes (shown
by the red, green and blue colors), such that lanes of the same color can be
processed in parallel.

An important challenge is the presence of data dependencies be-
tween adjacent pixels across a band boundary. Since updating these
solution coefficients requires access to data contained in a differ-
ent band, the processors must synchronize data to ensure that the
correct values are used. This leads to two separate concerns. First,
the sequence in which the solution coefficients are relaxed must al-
low processors to work in parallel, so that one processor does not
stall waiting for its neighbors to finalize their solution values. Sec-
ond, since updated coefficients near the band boundaries must be
synchronized across adjacent processors after each Gauss-Seidel
update, we must ensure that the associated inter-process communi-
cation does not bottleneck the system.

6.1 Parallelizing the Gauss-Seidel updates

To overcome the cycle of data dependencies between bands, and
thereby enable parallelism across processors, we further divide
each band into a set of three lanes, illustrated as red, green, and
blue in Figure 8. This lets all processors update their lanes of the
same color in parallel, since for example the neighborhood of any
red pixel on one processor does not include any red pixels from
another processor. In fact, just two lanes per processor would be
sufficient, but having three lanes is useful for our synchronization
algorithm described in the next section. The multi-lane structure is
related to traditional multi-color partitioning used in parallelizing
Gauss-Seidel relaxations [Briggs et al. 2000], except here it is used
at a coarser granularity (i.e. over lanes rather than pixels) to account
for the fact that memory is distributed.
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Fig. 9. Processing the green lane between the time that boundary data is
sent and the time it is received allows for a non-blocking implementation of
a distributed Gauss-Seidel relaxation.

6.2 Synchronizing band boundary values
To relax pixels near the boundaries of a band, each processor must
have access to its neighbors’ recently updated boundary values. We
support this by assigning each processor a left and right buffer that
stores copies of the neighbors’ pixel values. After Gauss-Seidel up-
dates are performed, neighboring processors communicate their up-
dated boundary data into these buffers. The key to efficiency is a
careful scheduling that allows inter-process communication to oc-
cur while the coefficients are relaxed. We first describe scheduling
multiple Gauss-Seidel relaxations of a single row, and then present
the implementation for the entire image.

Distributing the relaxation of a single row. To hide the latency
of inter-process communication, we interject the processing of the
center green lane between the sending and receiving of the recently
relaxed boundary values, and symmetrize the processing by using
boustrophedonic (alternating direction) traversal.

Figure 9 shows how this allows non-blocking computation of mul-
tiple Gauss-Seidel relaxations. In every even update, all proces-
sors update their pixels in a left-to-right traversal. Specifically, they
(1) relax their red lanes, (2) send the updated boundary values to
their left neighbors, (3) relax their green lanes, (4) receive the up-
dated boundary values from their right neighbors, and (5) relax
their blue neighbors. Then in every odd update, the update order
is reversed, with steps (1’)–(5’) performed in a right-to-left traver-
sal.

The data transfer initiated in step (2) and completed in step (4)
occurs asynchronously with the relaxation of the green lane in
step (3), so there is no need to block on inter-processor commu-
nication. The receipt of updated pixel values in step (4) ensures
that as we process pixels near the right boundary of the blue lane in
step (5), the accessed buffer pixels are all up-to-date.

Distributing the relaxation of multiple rows. We extend the
same strategy to perform k Gauss-Seidel relaxations of all the im-
age rows in a single streaming pass. Recall from Section 5 that the
sequential algorithm maintains a window of 2k+3 rows and updates
every other row in front-to-back order. To obtain correct results in
our distributed solver, we increase the height of the window by one
row, extend the width of left/right buffers from two pixels to 2k
pixels, and extend the range of the relaxation updates slightly into
adjacent lanes and buffers.

Figure 10 shows an example of performing k=3 updates per pixel.
The top diagram shows the left-to-right processing associated with
an initial window, and the bottom diagram shows the right-to-left
processing after advancing the window by one row. Due to the sym-
metry, we only provide details for the left-to-right traversal:

(1) Relaxing the red lane The pixels in the fourth row of the red
lane are relaxed from left to right, followed by the pixels in the

Fig. 10. The sequence of relaxations permitting a distributed implementa-
tion of k = 3 Gauss-Seidel relaxations, without blocking on data synchro-
nization between processors.

sixth row, and continuing all the way through the (2k+2)-nd row.
For each row 2l+2, relaxation is begun 2(k-l) pixels into the left
buffer and continues out to 2(k-l) pixels into the green lane.

(2) Sending left boundary data The first 2k pixels of each in-
core row are sent to the right buffer of the neighbor on the left.
Additionally, for each row 2l+2, the recently updated 2(k-l) pixels
in the left buffer are sent as well.

(3) Relaxing the green lane Pixels in rows 4,6, . . .(2k+2) are
successively relaxed. For each row 2l+2, this relaxation begins
2(k-l)+1 pixels into the green lane and continues out to 2(k-l) pix-
els into the blue lane.

(4) Receiving right boundary data Each row of the right buffer
is updated with 2k pixels received from the neighbor to the right.
Additionally, for each row 2l+2, the last 2(k-l) pixels of the blue
buffer are updated with the data from the neighbor to the right.

(5) Relaxing the blue lane Pixels in rows 4,6, . . .(2k+2) are re-
laxed. For each row 2l+2, relaxation begins 2(k-l)+1 pixels into the
blue lane and continues up to 2(k-l) pixels from the end of the blue
lane.

6.3 Correctness

To be a valid implementation of the Gauss-Seidel algorithm, each
pixel must be updated k times and there must exist an ordering of
the pixels such that the l-th update of pixel p reads neighboring pix-
els that have themselves been updated either l times if they lie ear-
lier than p in the ordering or l-1 times if they lie later. Though cum-
bersome, it can be shown that our implementation exactly repro-
duces k iterations of Gauss-Seidel relaxation using an interleaved
boustrophedonic ordering with strides determined by the widths of
the bands.
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6.4 Implementation details
Boundary conditions. The distributed solver can operate on

both planar and spherical images. For planar images, we assume
Neumann boundary conditions (zero cross-boundary derivatives),
so all operations are local in the grid. For spherical images, the
basis functions are reflected into the PQ parametric domain as de-
scribed in Section 4.4. To handle the boundary reflections for the
first and last two rows of the image, we maintain a 2-row buffer
beyond the boundary, and repeatedly synchronize this buffer data
across nodes after each update of the first and last two rows. The
cost of this special processing is negligible for large domain sizes.

Lane sizes. To maximize latency hiding for inter-process com-
munication, we maximize the width of the green lanes relative to
the red and blue ones.

Improved cache temporal locality. The central green lane may
be so wide that it causes the processor caches to thrash. Ideally,
all 2k+4 rows of the in-core window should reside in cache. Or,
at a minimum, the caches should hold the three rows 2l+2, 2l+3,
and 2l+4 that are reused by the successive relaxations of rows 2l+2
and 2l+4. To improve cache friendliness, we partition the band into
more than three lanes by dividing the green region into additional
lanes. The computation for these interior lanes proceeds as before,
using repeated instances of step (3).

Merging of bands at coarser solution levels. On the other hand,
as the image size shrinks at coarser multigrid levels, the green lane
may become so narrow that network latency is no longer masked
effectively. To counter this, we merge bands at coarser levels. This
reduced set of bands maps to fewer processors, and therefore re-
duces computational parallelism, but fortunately the number of im-
age rows in these coarser levels decreases proportionally, so there
is no asymptotic penalty.

Coarsest solution. At a sufficiently coarse level, data is trans-
ferred from all active nodes to a master process, the coarse solution
is computed using a conjugate gradients solver, and then it is redis-
tributed to the active nodes.

Network library. To communicate among the cluster nodes, we
use TCP network sockets, much like the Message Passing Interface
(MPI) protocol. A single process is launched on each cluster node,
with separate threads for each processor (core), so the threads can
communicate via shared memory.

7 Results
We experiment with our distributed multigrid solver using different
numbers of nodes within a 16-node computer cluster. Each node is
an 8-core 2.5GHz Xeon L5420 with 16 GB memory and 1.6 TB
disk space. The nodes are connected with gigabit Ethernet.

A surprising finding is that the JPEG decompression of the input
images (and JPEG compression of the output) require a significant
portion of the overall computation, so we allocate half of the pro-
cessing threads just for these operations. We therefore consider the
processing of 1, 2, or 4 image bands per node.

Figure 11 shows the result of stitching the 3.3-gigapixel St. James
panorama of 643 photographs acquired in [Kopf et al. 2007]. It
is solved in 378 seconds on 4 nodes with 4 bands per node. This
is 14 times faster than the serial non-distributed computation in

Fig. 11. Seamless stitching of a 3.3-gigapixel image from 643 pho-
tographs, and close-ups of gradient-based sharpening. Both operations take
about 6 minutes on a 4-node cluster.

Table II. Quantitative comparisons
Time (s) Max error

Image Pixels SM QT FACR Ours SM QT FACR Ours
Edinburgh 50M 79 122 190 17 5e-4 - 5e-12 1e-3
Redrock 87M 118 118 333 18 1e-3 - 3e-12 1e-3
Lobby 1G 2096 - - 136 - - - -
St. James 3.3G 5270 - - 378 1e-3 - - 2e-3
DSS data 64G - - - 2,070 - - - -
DSS data 1T - - - 33,400 - - - -

Comparison of streaming multigrid [Kazhdan and Hoppe 2008], quadtree adaptiv-
ity [Agarwala 2007], Fourier analysis cyclic reduction [McCann 2008], and our dis-
tributed parallel solver (with 4 nodes and 4 bands/node, except DSS with 16 nodes).
Errors are fractions of the input range. The small accuracy difference between the SM
results and ours is due to a minor implementation detail.

[Kazhdan and Hoppe 2008]. We verified that in stitching these pho-
tographs, our distributed solver has the same convergence proper-
ties as those reported for the non-distributed solver. Namely, the
rms error is 0.1 and the maximum error is 0.6, in the color range
[0,255]. Table II compares execution times and solution error with
prior techniques for some small and medium-size images.

We also explore gradient-based sharpening, in which the image gra-
dient is amplified but a soft constraint is introduced to preserve the
original colors [Bhat et al. 2008]. Recall from Section 3 that this
involves solving a screened Poisson equation in which the intro-
duction of the soft constraint modifies the coefficients of the ma-
trix L and the constraint vector f . However, the system has the
same structure and therefore the solver has the same performance.
Figure 12 shows gradient-based sharpening applied to a gigapixel
spherical image, again using a solver distributed over 4 nodes.
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Table III. Processing efficiency as a function of machine parallelism
Image size 32,768×8,192 131,072×32,768 524,288×131,072 2,097,152×524,288

Bands/node Bands/node Bands/node Bands/node
Nodes 1 2 4 1 2 4 1 2 4 1 2 4

1 0.98 0.75 0.42 0.86 0.66 0.47 0.86 0.70 0.41 † † †
2 0.96 0.78 0.51 0.87 0.75 0.47 0.83 0.68 0.38 † † †
4 0.90 0.70 0.41 0.89 0.74 0.42 0.85 0.68 0.39 † † †
8 0.84 0.61 0.38 0.89 0.50 0.35 0.71 0.73 0.36 † † †

16 0.68 0.52 0.29 0.78 0.76 0.42 0.89 0.50 0.26 0.75 0.66 0.46

Effective processing efficiency, measured as solution rate in megapixels per second per band, for various numbers of cluster nodes and
bands per node. (Each band is assigned to a separate processor on a node.) †For the largest image, the solver required at least 16 nodes
for sufficient temporary disk space.

Fig. 12. Gradient-based sharpening on a gigapixel spherical panorama,
computed in 136 seconds on a 4-node cluster.

DSS dataset. The terapixel Digitized Sky Survey forms a
2048K×512K grid in the PQ parametric domain. Therefore, in the
fully parallelized configuration of 16 cluster nodes and 4 bands per
node, each processor is assigned a 32K×512K image band. To an-
alyze scalability, we consider the same dataset downsampled at 6
more octaves, down to a resolution of 32K×8K. Figure 13 shows
results of stitching on the full-size dataset. Due to our aggressive
gamma adjustment, some low-frequency patterns can be seen in
the results. These patterns are caused by vignetting artifacts in the
source color plates. This reflects the general limitation of gradient-
domain stitching in the presence of variations that are more com-
plicated than simple offsetting or scaling, and would arise with any
Poisson solver. It is not due to our approach or implementation.

To assemble a panorama, the input photographs must be mapped
through some homography (even if very slight), so one resampling
step is required. For viewing, our PQ-parameterized spherical im-
age can be used directly as a texture map over a tessellated mesh,
so no additional resampling is necessary. The rendered texture does
not suffer from anisotropic sampling artifacts at the poles, as would
be observed with a traditional equirectangular parameterization.

The solver requires 24 bytes/pixel to represent the image u and con-
straints f as 3-channel floating-point values. So without streaming
computation, the full-resolution terapixel image would need 24 TB,
more than 100 times the aggregate memory of the cluster. With
streaming, memory usage is only 700 MB per node.

Fig. 13. Close-ups of the terapixel sky survey at different scales, showing
the gradient-based stitching results (gamma-enhanced).

The solver requires 16 bytes/pixel of disk space to store the inter-
mediate result between the restriction and prolongation phases at all
multigrid levels. Due to this disk space requirement, the terapixel
solution needs to run on a minimum of 16 nodes.

Table III shows the processing rates for the different datasets on
various numbers of nodes, and with different numbers of bands
(threads) per node. This rate is expressed as the number of solved
pixels divided by the solution time and by the number of pro-
cessors, and is therefore a measure of the efficiency of the dis-
tributed solver. Thus, for the terapixel dataset, the rate is 4.6·105

pixels/sec/processor, and with 16×4 processors running, the over-
all computation time is 1·1012/4.6·105/64=33,400 seconds or 9.3
hours. The 8-core processing nodes have about 60% CPU utiliza-
tion when running 4 bands per node. The utilization beyond 50%
is due to the asynchronous decompression and compression of the
images. We did not reach 100% utilization with a higher number of
bands per node due to synchronization inefficiencies between the
image decompression/compression threads and the solver.
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Fig. 14. Effective solution rate per processor, in megapixels per second, as
a function of the number of cluster nodes and of the size of the image. (The
number of bands per processor is fixed at 4.)

Figure 14 graphs this processing rate data for the case of 4 bands
per node. The relatively flat curves in the graph indicate that the
rate is relatively constant as we change the number of nodes in the
range from 1 to 16, and as we change the size of the image from
250 megapixels to 1 terapixel — over nearly 5 orders of magnitude.
This is strong confirmation of the solver’s scalability.

8 Discussion

In designing a parallel approach for applying gradient-domain tech-
niques to large images, we have developed a solver that implements
classical multigrid with Gauss-Seidel relaxations within each level
of the multigrid hierarchy. We have chosen to use such an approach
over parallelized domain-decompositions [Smith et al. 2004] be-
cause the latter give rise to additive Schwarz methods that are
known to converge less efficiently in general and are often only
used as preconditioners for Krylov subspace methods [Xu 1992;
Szyld and Frommer 1998; Nabben 2003]. (Note that the Schwarz
alternating method is precluded by our assumption that the system
does not fit into the aggregate memory of the cluster as such an
implementation would require multiple disk reads/writes of the so-
lution and constraints at each level of the multigrid hierarchy.)

Retrospectively, we have found that for gradient-domain process-
ing, domain-decompositions may in fact provide sufficient accu-
racy. As an example, Table IV compares the magnitudes of the
residual obtained using 5 Gauss-Seidel iterations to relax the solu-
tion on a 1024×1024 image. Residuals were obtained by running a
multigrid solver in which the domain at each level of the hierarchy
was partitioned into four sub-domains with 2, 5, and 10 pixels of
overlap. Gauss-Seidel relaxation was performed on each of the sub-
domains in parallel, and the individual solutions were then merged
to obtain the relaxed solution for that level of the hierarchy.

While we have not explored such an extension in this work, our
solver could be easily modified to support a domain-decomposition
approach. In addition to partitioning the image columns into
column-bands assigned to different processors, we would also par-
tition the rows of the image into row-bands. The computation
across the columns would proceed as before while the computation
in the different row-bands would now also be performed in paral-
lel. One advantage of such an approach might be that in distributing
the parallelism across both the rows and the columns of the image,
the column-bands become wider, allowing for more computation to
occur between the sending and receiving of boundary information,
alleviating a possible network I/O bottleneck.

Table IV. Comparison with domain decomposition

Classical GS
Domain-Decomposition

Overlap=2 Overlap=5 Overlap=10
Stitching 5.4·10−2 +7.3·10−3 +1.1·10−3 +8.8·10−6

Sharpening 1.3·10−4 +1.5·10−2 +1.0·10−3 +5.3·10−7

Residual magnitudes obtained when applying classical Gauss-Seidel relax-
ation to the entire grid, and increases in residual magnitude when merging
solutions obtained by separately relaxing over four sub-domains with differ-
ent extents of pixel overlap.

9 Summary and future work

We extend gradient-domain processing to spherical domains. To
maintain efficiency, we develop a spherical parameterization that
allows stream processing yet avoids singularities that would lead
to a poorly conditioned system. We use a non-intrinsic formula-
tion, and show that the resulting approximation error is perceptu-
ally small and thus practical for graphics applications.

Applying gradient-domain approaches to expansive panoramas in-
volves dauntingly large linear systems. We present a technique to
solve such systems by parallelizing a multigrid computation over a
distributed cluster. Due to its streaming design, our technique can
handle images whose sizes far exceed the aggregate memory of
the cluster. Results demonstrate excellent scalability with respect
to both problem size and available parallelism.

In future work, it would be interesting to consider other spherical
parameterizations, to further reduce distortion, and to allow closed-
form evaluation and differentiability. Also, it would be desirable to
approximate the intrinsic Laplace-Beltrami operator without incur-
ring excessive computational cost. Another interesting direction is
to consider the stitching of images having different resolutions, to
form seamless transitions not only across stitching boundaries at a
given resolution, but also across a mipmap pyramid.
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