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Abstract

We introduce a new tool to solve the large linear systems arising
from gradient-domain image processing. Specifically, we develop
a streaming multigrid solver, which needs just two sequential passes
over out-of-core data. This fast solution is enabled by a combina-
tion of three techniques: (1) use of second-order finite elements
(rather than traditional finite differences) to reach sufficient accu-
racy in a single V-cycle, (2) temporally blocked relaxation, and
(3) multi-level streaming to pipeline the restriction and prolonga-
tion phases into single streaming passes. A key contribution is
the extension of the B-spline finite-element method to be compati-
ble with the forward-difference gradient representation commonly
used with images. Our streaming solver is also efficient for in-
memory images, due to its fast convergence and excellent cache
behavior. Remarkably, it can outperform spatially adaptive solvers
that exploit application-specific knowledge. We demonstrate seam-
less stitching and tone-mapping of gigapixel images in about an
hour on a notebook PC.

Keywords: out-of-core multigrid solver, B-spline finite elements,
Poisson equation, gigapixel images, multi-level streaming.

1 Introduction

Many recent image processing techniques operate in the gradient
domain. They extract gradient fields from one or more images, pro-
cess the data to construct a desired gradient field, and solve for a
new image whose pixel differences best fit the desired gradients.

For example, lighting is removed from an image by zeroing small
gradients [Horn 1974], or by selecting the median of gradients from
multiple exposures [Weiss 2001]. A high dynamic range (HDR) im-
age is tone-mapped by adaptively attenuating luminance gradients
[Fattal et al. 2002]. Overlapping images are stitched seamlessly by
merging their gradients [Pérez et al. 2003; Agarwala et al. 2004;
Levin et al. 2004]. Shadows are removed by zeroing large lumi-
nance gradients in regions of constant chromaticity [Finlayson et al.
2002]. Undesirable reflections are removed in flash and ambient
image pairs [Agrawal et al. 2005]. Photographic tone management
is improved using gradient constraints [Bae et al. 2006]. Novel
painterly effects are possible with interactive gradient-domain mod-
eling [McCann and Pollard 2008]. In all these applications, the final
image is recovered from the processed gradient by solving a Pois-
son equation, which is discretized to form a sparse linear system.

Recent work has begun to address the processing of large (e.g.
gigapixel) images [Kopf et al. 2007b]. In this case the resulting
linear systems, and often the images themselves, are too large to
fit in main memory. Consequently, direct solution techniques like
Cholesky factorization become impractical, and traditional relax-
ation techniques like conjugate gradients and multigrid are ineffi-

cient because they require many iterations over out-of-core data. As
reviewed in Section 2, the associated Poisson problem can be made
tractable for some specific applications through adaptive discretiza-
tion, and has also been addressed using heuristic approximations.

Our contribution We introduce a general, efficient, accurate
solver for Poisson equations over large images. We combine multi-
grid computation with a data streaming framework, to allow out-of-
core processing on gigapixel images. Our scheme maintains small
moving windows of data in memory (and cache) by sequentially
advancing through the out-of-core data. Because the solver com-
putation outpaces disk I/O, the speed bottleneck is the number of
streaming passes through the image data. We are able to obtain suf-
ficient accuracy in just 2 passes, even on gigapixel images. Three
key components enable this efficient solution:

• Whereas prior image solvers use finite differences, we discretize
the Poisson equation with second-order finite elements, allowing
us to reach sufficiently low error in a single multigrid V-cycle.

• Within a grid level, temporally blocked relaxation evaluates sev-
eral Gauss-Seidel relaxations as a single streaming operation.

• We interleave these multiresolution relaxations using multi-level
streaming so that the restriction and prolongation phases of a V-
cycle can each be pipelined into a single streaming pass.

Compared to finite differences, second-order finite elements require
larger stencils for relaxation, restriction, and prolongation. Though
these larger stencils increase computational load, they improve the
solver convergence rate significantly. On most images, a second-
order solver with a single V-cycle finds a solution with maximum
error markedly less than 1/256 of the pixel value range, i.e. well
within the requisite precision for 8-bit/channel images. We show
that additional V-cycles further decrease error at a steady rate, and
moreover each such cycle requires just one extra streaming pass.

Since forward-difference representations of gradient fields are com-
monly used as constraints in image processing, it is essential that
our system support them. Although finite differences and finite el-
ements provide alternate interpretations of image derivatives, we
show that the use of B-spline elements lets us correctly solve for
images subject to finite-difference constraints.

In this paper we consider instances of the Poisson equation with
unconstrained (more precisely, Neumann) boundary conditions,
which supports many gradient-domain techniques. The Poisson
equation corresponds to an elliptical partial differential equation
with spatially constant coefficients. In Section 10 we discuss fu-
ture extensions for more general boundary conditions or PDEs.

While our main motivation is the processing of huge images, we
find that the streaming multigrid approach is also beneficial for
smaller in-memory images due to its fast convergence and excel-
lent cache behavior. On a single CPU core, we are able to solve a
3-channel, 16-megapixel gradient-domain problem with an rms er-
ror on the order of 10−5 in 15 seconds. The ongoing transition to
many-core architectures will likely favor methods with a high ratio
of local computation to memory bandwidth. In effect, memory ac-
cess may become the next I/O bottleneck. Because our streaming
scheme offers many opportunities for computational parallelism on
local data, with few accesses to global memory, it is well suited for
future scalability.



2 Related work

Due to the numerous applications of the Poisson equation, many
solution techniques have been explored. The fast Fourier transform
is an elegant scheme, but has O(n logn) time complexity. A di-
rect solution can also be obtained by sparse matrix factorization,
but the resulting factors may require significant temporary mem-
ory. Iterative solvers like Gauss-Seidel and conjugate gradients are
memory-efficient but usually require many iterations over the data.
The number of iterations can be reduced using either multiresolu-
tion preconditioners [Gortler and Cohen 1995; Szeliski 2006] or
multigrid solvers [Brandt 1977; Briggs et al. 2000]. Such tech-
niques have also been implemented efficiently on the GPU [Bolz
et al. 2003; Goodnight et al. 2003; Göddeke et al. 2008].

Most previous work has focused on Poisson systems that fit in
memory. Toledo [1999] presents an excellent survey of out-of-core
algorithms for large linear systems. Most algorithms assume that
while the system matrix may be stored on disk, the solution vector
itself (i.e. the image in our case) still fits in memory. In general, it
was previously thought that advanced iterative techniques, includ-
ing multigrid, are difficult to schedule out-of-core.

One approach for out-of-core images is to solve the problem on
a coarser-resolution grid and then upsample the resulting approx-
imation [Kopf et al. 2007a]. However, maintaining sharp features
involves heuristics that may not always be robust.

In some cases where the solution is known to have low frequency
almost everywhere, the problem size can be reduced by adaptively
partitioning the domain. For image stitching, Agarwala [2007] ex-
ploits the fact that if an initial guess is generated by copying pixels
from the input images, the residual has low frequency away from
the image seams and the Poisson equation can be solved over a
quadtree adapted to the seams. Such adaptive partitions have also
been used to solve the Poisson equation in the context of fluid
flow simulation [Losasso et al. 2004] and surface reconstruction
[Kazhdan et al. 2006].

Our method addresses the general case where (1) the Poisson equa-
tion must be solved accurately everywhere, (2) the problem size
cannot be reduced, and (3) no initial solution guess is available.

Bolitho et al. [2007] introduce multi-level streaming for an out-of-
core Poisson solution. Their method, which implements a cascadic
(prolongation-only) solver, has adequate accuracy for surface re-
construction but not for image processing. In this work, we show
that the multi-level streaming idea can be integrated into a finite-
element multigrid solver that performs multiple Gauss-Seidel itera-
tions at each resolution and implements a complete V-cycle in only
two streaming passes. We demonstrate that the resulting solution is
accurate enough for gradient-domain image processing.

3 Gradient-domain problem as Poisson solution

In the continuous setting, we seek an image U(x,y) on a domain

Ω = [0,1]2 whose gradient is closest to a desired gradient field
~G(x,y), i.e. to find U minimizing ‖∇U − ~G‖. Using the normal
equation, this minimization is equivalent to solving the Poisson
equation ∆U = F , where ∆ = ∇ ·∇ is the Laplacian operator and

F = ∇ · ~G is the divergence of the desired gradient.

Of course, an image is typically represented by a discrete N ×N
grid u of pixel values ui, j . One of the challenges in setting up
the Poisson equation in the context of image processing is that the
Poisson equation is a continuous beast requiring the computation
of derivatives while images are inherently discrete. There are two
ways to address this. The first is to discretize derivatives, resulting

in the traditional finite-difference approach, often used in image
processing (Section 4). The second is to treat images as continu-
ous functions, resulting in the finite-element approach pursued here
(Section 5).

4 Review of finite-difference multigrid

Both the image gradient ∇U and desired gradient ~G are com-
monly expressed as forward differences of adjacent pixels values,
i.e. ∇ui, j = (ui+1, j−ui, j, ui, j+1−ui, j) and similarly for the forward

differences ~gi, j = (gx
i, j,g

y
i, j). With such a discretization, one seeks

to minimize ‖∇u−~g‖, which is equivalent to solving a sparse lin-
ear system Lu = f . Each row of the matrix L corresponds to the
five-point Laplacian stencil with weight −4 at the current pixel
and weight 1 at the four adjacent pixels. And, the Laplacian con-
straint vector f has entries defined in terms of backward differences
fi, j = gx

i, j−gx
i−1, j +g

y
i, j−g

y
i, j−1. For simplicity we use u (and sim-

ilarly f ) to denote both an N×N array of pixels {ui, j} and a vector

(u0 . . .uN2−1)
T of the same pixels in raster order.

To avoid constraining boundary values in the Poisson equation, the
definition of ∇u and the construction of f are modified at domain
boundaries to assume trivial Neumann conditions, i.e. zero cross-
boundary derivatives. The resulting matrix L does not have full
rank, since the solution is only determined up to an additive con-
stant. However, a solution always exists because the construction
of f using the divergence operator guarantees compatibility.

A simple approach for solving the linear system Lu = f is to apply
repeated iterations of Gauss-Seidel relaxation. In each iteration, the
image u is updated by successively modifying each pixel ui while
holding the other pixels constant:

ui =

(

fi−∑
j 6=i

Li, ju j

)

/ Li,i.

Because the Laplacian operator L has local 2D support, these relax-
ation updates only require access to local data.

However, a limitation of Gauss-Seidel relaxation is that it converges
slowly on the low-frequency components of the solution. Multi-
grid is introduced to overcome this [Briggs et al. 2000]. The sin-
gle system Lu = f is replaced by a multiresolution set of systems
{

Llul = f l
}

, where ul ∈R
N2

l with Nl = 2l . Restriction and prolon-
gation linear operators are defined to transition between levels:

Rl
l+1 : R

N2
l+1 → R

N2
l and Pl+1

l : R
N2

l → R
N2

l+1 ,

typically using local weighted averaging and bilinear interpolation.

The restriction and prolongation operators are combined to gener-
ate the standard V-cycle (Figure 1), consisting of a fine-to-coarse
restriction phase followed by a coarse-to-fine prolongation phase:

• Restriction: Assuming an initial guess ul for the solution at
level l, relaxation is performed to obtain an approximate solu-

tion ul
R. Then the residual rl = f l−Llul

R is restricted, giving the
right-hand side for a coarser-grid correction problem:

f l−1 = Rl
l−1 rl .

This process is repeated with level l−1 replacing level l and

setting the initial guess ul−1 = 0.

• Base Solution: At a sufficiently coarse level lmin, the linear sys-

tem Llmin ulmin = f lmin is solved directly.



Figure 1: Standard multigrid V-cycle, consisting of a restriction
phase followed by a prolongation phase. This diagram also shows
the data flow in our streaming solver described later in Section 6.

• Prolongation: Assuming a correction solution ul−1
P at level l−1,

an initial guess is obtained at level l by adding the prolongation
of that solution to the solution obtained in the restriction phase:

ul = Pl
l−1 ul−1

P +ul
R.

Then, relaxation is performed to obtain the solution ul
P, and the

process is repeated with level l+1 replacing level l.

5 Our finite-element multigrid approach

We represent an image as a continuous function using a finite-
element approach, with individual pixel values acting as coeffi-
cients of continuous basis functions. We have chosen to use B-
splines as they are differentiable functions with minimal local sup-
port, and satisfy essential nesting conditions. Specifically, we in-
terpret pixel values as coefficients of tensor-product B-spline basis
functions B(x,y) centered at the pixel positions. As discussed later
in Section 7, we find that the choice of second-order (quadratic)
B-splines gives the best performance tradeoff for gradient-domain
image processing.

For simplicity we begin our description of the approach in 1D. In
this setting the discrete image u defines the continuous function

U(x)≡∑
i

uiBi(x),

where Bi(x) is the B-spline basis B(x) translated to the i-th pixel.
B-spline functions of even degree are nested according to a dual
subdivision structure, i.e. Bi(x) = B(N x− i−0.5), i ∈ {0 . . .N−1}
are centered at different positions on different levels, whereas B-
splines of odd degree are nested according to a primal subdivision
structure, i.e. Bi(x) = B(N x− i), i ∈ {0 . . .N}.

5.1 Representing the Poisson equation

The B-spline finite elements define a finite-dimensional vector
space, B = Span{Bi(x)}, over which we can solve the Poisson
equation. Interpreting an image as a continuous function lets us
exactly compute its Laplacian, ∆U(x) ≡ ∑i ui∆Bi(x). However,
there are still two difficulties in discretizing the Poisson equation

∆U = F . First, the divergence F = ∇ · ~G of the desired gradient
may not reside in the spanning space B. Second, even though the
B-spline functions Bi(x) are in B, their Laplacians are not. (The
derivative of a B-spline is the difference of two lower-degree B-
splines, which lie in a different space.)

These difficulties are addressed using the Galerkin method
(e.g. [Fletcher 1984]). We reformulate the Poisson equation to solve
for the image U with the property that the projection of its Lapla-
cian onto B is equal to the projection of F onto B. Equivalently,
the image U(x) must satisfy the matrix form

〈∆U,B j〉= 〈F,B j〉 for all 0≤ j < N,

where 〈·, ·〉 denotes the integral of the product of two functions over
the domain Ω.

Thus, if we form

• L as the N×N matrix with Li, j = 〈∆Bi(x),B j(x)〉, and

• f as the vector with f j = 〈F(x),B j(x)〉,

solving the Poisson equation reduces to solving Lu = f .

An alternate derivation is to apply the Galerkin method to the op-

timization minU ‖∇U − ~G‖ using −∇B j as test functions. This re-
sults in the set of linear equations

〈∇U,−∇B j〉= 〈~G,−∇B j〉 for all 0≤ j < N,

where 〈·, ·〉 is also used to denote the integral of the pointwise dot
product of two vector fields over Ω. In the presence of trivial Neu-
mann boundary conditions, the two linear systems can be shown to
be identical using the Gauss divergence theorem. As a result, ma-
trix L can be expressed as Li, j = 〈∇Bi(x),−∇B j(x)〉, which only
requires that the basis function be once-differentiable.

The linear system has similar structure to that obtained from finite
differences. However, the matrix L is less sparse. For B-spline basis
functions of order n, each row of L represents a stencil with 2n+1
nonzero entries in 1D, or (2n+1)2 nonzero entries in 2D.

5.2 Fitting forward-difference gradient constraints

To solve for the image U(x,y) whose gradient is closest to a desired

gradient field ~G(x,y) we must solve the associated normal equation:

Lu = f where f j = 〈~G, −∇B j〉.

However, in most image processing applications we are not given

a continuous field ~G, but rather a discrete set of values ~gi, j repre-
senting forward differences of pixel values. So again we face the
problem of interpreting discrete representations as continuous ones.

Although there are many ways to interpret ~g as a continuous gra-
dient field, the correct definition must conform to the forward-
difference representation. Specifically, in the case that ~g is the gra-
dient of an (unknown) image v:

~gi, j =
(

vi+1, j− vi, j, vi, j+1− vi, j

)

,

our definition of ~G should equal the gradient of the equivalent con-

tinuous image, i.e. ~G = ∇V where V = ∑vi, jBi, j .

A crucial property for deriving a conforming continuous interpreta-
tion is that the derivative of a B-spline of degree n can be expressed
as the difference of two shifted B-splines of degree n−1 (Figure 2):

d

dx
Bn(x) = Bn−1(x+0.5)−Bn−1(x−0.5).

We first continue the analysis in 1D, and then extend it to 2D.



Figure 2: Given a B-spline of degree n (blue), its derivative (red)
can be expressed as the difference of two offset B-splines of degree
n−1 (dashed green), as shown here for n=1,2.

1D case Recall that the discrete signal v expresses a continuous
function in terms of quadratic B-splines: V (x) = ∑i vi B2

i (x), where

B2
i (x) is centered in the middle of the i-th lattice cell.

To compute the derivative of V we observe that:

∇V (x) = N ·∑
i

(

B1
i (x)−B1

i+1(x)
)

vi

= N ·∑
i

B1
i+1(x)(vi+1− vi) = N ·∑

i

B1
i+1(x)gi.

Thus, even though we are not given the original image V , we can
compute its derivative from the forward-difference representation
by interpreting the values gi as coefficients of first-order B-splines.

Using this interpretation, we can directly compute the Laplacian
constraints on the right-hand side:

f j =
〈

∇V (x), −∇B2
j(x)
〉

=−N ·∑
i

gi

〈

B1
i+1(x),

d

dx
B2

j(x)

〉

.

2D case Recall that in the 2D case, the discrete array v defines a
continuous function using tensor products of quadratic B-splines:
V (x,y) = ∑i, j vi, j B2

i (x)B2
j(y). As above, we obtain

∇V (x,y) = N ·

(

∑
i, j

B1
i+1(x)B2

j(y)gx
i, j, ∑

i, j

B2
i (x)B1

j+1(y)g
y
i, j

)

.

And again, even though we are not given the original image V , we
can compute its gradient from the forward-difference representa-
tion by interpreting the values ~gi, j as coefficients of mixed tensor
products of first- and second-order B-splines.

Using this interpretation, we can directly compute the Laplacian
constraints on the right hand side:

fi, j = − N ·∑
s,t

gx
s,t

〈

B1
s+1(x),

d

dx
B2

i (x)

〉

〈

B2
t (y), B2

j(y)
〉

− N ·∑
s,t

g
y
s,t

〈

B2
s (x), B2

i (x)
〉

〈

B1
t+1(y),

d

dy
B2

j(y)

〉

.

Note that the inner products defining the Laplacian constraints are
nonzero only if |s−i|, |t− j| ≤ 2, so the computation can be ex-
pressed using two 5×5 stencils. Also, these stencils can be pre-
computed and are constant within the domain interior.

For trivial Neumann boundary conditions, the B-spline basis func-
tions must have zero derivatives at the domain boundaries x = 0,1.
This is easy to achieve by modifying the bases using reflection, as
B2

i (x)← B2
i (x)+ B2

i (−x)+ B2
i (1− x) which also preserves essen-

tial nesting properties. The B-splines used to represent derivatives
are modified accordingly to have trivial Dirichlet conditions using
skew reflection, as B1

i (x)← B1
i (x)−B1

i (−x)−B1
i (1− x).

5.3 Defining the multigrid operators

B-splines are an effective multigrid basis for two reasons. First,
they provide nested subspaces under grid subdivision, ensuring that
solutions found at coarser resolutions can be (losslessly) realized
in the finer resolution bases. Second, their local support allows re-
laxation and prolongation to be efficiently computed with compact
stencils [Christara and Smith 1997].

Using B-splines in a multigrid setting, the prolongation operator
becomes the linear map nesting B-splines at resolution N in the
space of B-splines at resolution 2 ·N. By duality, the restriction
operator is defined as the transpose of the prolongation operator.

Thus, for quadratic B-splines in 1D, prolongation matrices P have

local weights 1
4 (3 1) and 1

4 (1 3) on alternating rows; the rows

of restriction matrices R have weights 1
4 (1 3 3 1); and, rows of

Laplacian matrices L have weights 1
6 (1 2 −6 2 1).

For bi-quadratic B-splines, the local 2D stencils for prolongation,
restriction, and the Laplacian are respectively:

1

16

(

9 3
3 1

)

,
1

16

(

1 3 3 1
3 9 9 3
3 9 9 3
1 3 3 1

)

, and
1

360





1 14 30 14 1
14 52 −12 52 14
30 −12 −396 −12 30
14 52 −12 52 14
1 14 30 14 1



 .

6 Streaming multigrid solver

Traditional implementations of multigrid perform restriction, pro-
longation, and relaxation iterations as separate passes, and there-

fore traverse the vectors ul and f l at the various levels many times.
While each operation is computationally fast, especially for the
small stencils of finite-difference schemes, such an approach is slow
for out-of-core images. Also, it may hinder performance even for
in-memory images due to lack of cache locality. Indeed, Bolz et
al. [2003] and Goodnight et al. [2003] both report that their CPU
and GPU multigrid implementations are bandwidth-limited.

Our insight is to perform all operations as streaming computations
to maintain a small working set, and to group together as many
computations as possible to minimize the number of data passes
and thereby reduce memory and disk bandwidth. Our plan is three-
fold. First, we implement the Gauss-Seidel solver so that all of
its updates occur in one streaming pass. Second, we perform re-
striction and prolongation between levels in a streaming fashion.
Finally, we interleave all multigrid operations across levels so that
data can be transferred directly between the multiresolution solvers
without having to be stored temporarily (to memory or disk).

Temporally blocked relaxation We perform k iterations of
Gauss-Seidel relaxation as a single streaming operation. This is
largely inspired by the works of [Pfeifer 1963; Douglas et al. 2000].
They show that, with careful attention to data-dependencies, several
finite-difference Gauss-Seidel updates can be performed together
by maintaining a moving block/tile of data values in the L1 cache.

We have found that the cache prefetcher in the Intel Core 2 proces-
sor, which automatically reads sequentially accessed data from the
L2 to the L1 cache, is efficient enough that we can use a similar
strategy to advance a window spanning entire rows of the image.
The idea is to apply relaxation updates on all image pixels k times
by processing pixels in a moving window tall enough to respect data
dependencies. As this window sweeps down the image, its pixels
are updated in “counter-current” order, as shown in Figure 3.

In adapting this approach to the second-order finite-element setting,
we must ensure that two properties are satisfied. First, when updat-
ing the pixels in row j, pixels in rows { j−2, . . . , j+2} must be



Figure 3: Visualization of the temporally blocked solver performing
k=3 Gauss-Seidel iterations as a single streaming operation. Each
square represents a row of pixels in the image; blue squares indicate
the pixel rows that are memory-resident (i.e. in the image window);
numbers identify the temporal sequence of the relaxations.

contained in the window, since the Laplacian stencil has size 5×5.
Second, as we update pixels in row j for the m-th time, pixels in
rows j−2 and j−1 must have already been updated m times and
pixels in rows j+1 and j+2 must have been updated m−1 times.

To satisfy these requirements, as the window sweep index i is ad-
vanced, we maintain a window consisting of rows [i−1, i+2k+1],
and perform a skipping, counter-current relaxation sweep, updat-
ing pixels in rows {i + 2k− 1, i + 2k− 3, . . . , i + 1}. For instance,
in the k = 3 case shown in Figure 3, the second relaxation of the
fourth row of pixels, labeled {11}, can be performed because the
two prior rows have already been relaxed twice (as indicated by
labels {02,06} and {03,08}) and the two subsequent rows have al-
ready been relaxed once (as indicated by {07} and {10}).

Streaming restriction and prolongation Because both these op-
erations involve local stencils, they can be performed as streaming
computations. It is most efficient to iterate over the destination level
and accumulate stencil-weighted values from the source level.

Multi-level streaming We intersperse the restriction and relax-
ation operations across levels to realize the restriction phase as
a single multi-streaming pass. And similarly, we intersperse the
prolongation and relaxation operations to realize the prolongation
phase as another multi-streaming pass. Therefore we are able to
compute an entire multigrid V-cycle in just two streaming passes,
as shown in Figure 1.

At each level of the restriction phase, the approximate solution ul
R

and the Laplacian constraint vector f l are streamed to disk, while

the restricted residual f l−1 = Rl
l−1 rl is transferred to the next-

coarser level via a streaming memory buffer. And at each level of

the prolongation phase, ul
R and f l are streamed back from disk, and

combined with the prolonged correction which is transferred from
the coarser level via a streaming memory buffer.

For both the restriction and prolongation phases, we advance a
sweep index il at each level l, with finer index il+1 advancing twice
for every advancement of coarser index il . We maintain windows

of image rows on both ul and f l , much as in the temporally blocked
relaxation solver. Each level performs several streaming computa-
tions, so the windows must be larger to account for the additional
dependencies. The coarser-level relaxations trail behind those in
finer levels during the restriction phase, whereas the finer-level re-
laxations trail behind those in coarser levels during the prolongation
phase. Table 1 summarizes the parameters necessary for the multi-
level streaming implementation.

Restriction phase Prolongation phase

il−1+2k+1 < ⌊(il−1)/2⌋ il+1+2k+1 < 2il−1

Data window [il−3, il+2k+1] Data window [il−1, il+2k+1]

Restr. from l+1 [il+2k+1] Prolong. from l−1 [il+2k+1]

Relaxation [il−1, il+2k+1] Relaxation [il−1, il+2k+1]

Residual [il−3, il+1]

Table 1: Inter-level dependencies on the sweep indices il over the
image rows, extents of the streaming windows at each level, and
window ranges accessed by each of the streaming operations.

Figure 4: Full data pipeline for gradient-domain processing, show-
ing two successive V-cycles. Typically a single V-cycle is sufficient.

Number of V-cycles In traditional multigrid, several V-cycles are
necessary to ensure accurate convergence, resulting in performance
degradation due to low I/O throughput on out-of-core data [Toledo
1999]. With the improved accuracy of the degree n = 2 finite ele-
ments and the larger number k∼ 5 of relaxation iterations done per
level, a single V-cycle often becomes sufficient (Section 7).

If additional V-cycles are necessary, these can be chained together
as in Figure 4. A surprising fact is that the prolongation phase of a
first V-cycle can be directly streamed into the restriction phase of a
second V-cycle, to form a single combined streaming pass. Thus,
the intermediate result between V-cycles need not be stored to disk.

Full streaming pipeline Figure 4 summarizes the pipeline, start-
ing from one or more original images {ui}, and resulting in a new
image u. We extract the finite-difference gradient fields~gi, and pro-
cess them into a desired gradient field ~g. Next we compute the
Laplacian constraint vector f from ~g as explained in Section 5.2.
Finally, we solve the system Lu = f using one or more multigrid
V-cycles. With a single V-cycle, the full pipeline needs just two
streaming passes. With v V-cycles, v+1 streaming passes are suffi-
cient (rather than the expected 2v), as shown for v=2.

Many image compression libraries like JPEG support streaming in-
put and output, so we can directly write the final image in com-
pressed form to disk. We find that such compression is faster than
disk I/O, so it actually speeds up the overall process.

Setting the image mean Recall that with Neumann boundary
conditions the solution u has an unconstrained mean value. Often
one would like to prescribe this mean value, for instance to equal
the average color of the original images {ui}. The obvious scheme
would require an extra post-processing pass. We have found a prac-
tical workaround as follows. We maintain the coarser levels up
to 10242 pixels entirely in memory rather than disk. Then during
the prolongation phase, at the finest memory-resident level we de-
lay streaming to finer levels to allow a quick pass that assigns the
desired mean value. Although relaxation at finer levels may still
change the solution’s mean, this change is small. For example, to
stitch together the 19588×4457 pixel Red Rock image in Figure 8,
we maintain resolutions 2560×576 and coarser entirely in core. By
setting the mean value before proceeding to the prolongation of the



Figure 5: Plot of the rms and maximum errors as a function of the number of multigrid V-cycles, for elements of degree n=1,2,3 and using
k=2,5,8 Gauss-Seidel updates. Errors are expressed are fractions of the value range. Second-order elements give the fastest convergence.

out-of-core resolutions, we obtain a final image whose mean value
is within 0.1% of the prescribed value. Alternatively or in addition,
the final mean can be computed during prolongation and stored in
the output, for adjustment by any later stream processing.

Memory analysis We implement the active windows on ul
R and

f l as circular memory buffers of image rows. These windows have
constant height (2k+5 for the restriction phase, and 2k+3 for pro-
longation), but their widths decrease geometrically at coarser lev-
els along with the images. Therefore, if the input image has size
Nx ×Ny, the total memory usage is O(Nx). Interestingly, for the
wide images shown in Section 9, it would be more memory-efficient
to sweep horizontally rather than vertically, but unfortunately this
is incompatible with the row-major ordering of image file formats.

Time analysis The amount of work at each multigrid level is lin-
ear on the image size at that level. Because the system size is re-
duced by a factor of 4 between successive levels, the overall time
complexity is linear on the input size.

7 Efficient convergence of second-order elements

The efficiency of the Poisson solver depends on several parame-
ters: the degree n of the finite elements, the number v of V-cycles,
and the number k of Gauss-Seidel updates. These parameters af-
fect performance by dictating the number of image rows that must
be memory-resident (∼ k n), the number of times that image data
must be transferred to/from disk (v + 1), and the overall per-pixel
computational cost (vk (2n+1)2).

In this section, we show that second-order elements provide the best
convergence rate. We first demonstrate this empirically, and next
provide theoretical justification by analyzing the spectral properties
of the solver.

Empirical evaluation We examine the errors obtained in recon-
structing an image from its Laplacian for a variety of different set-
tings. Although this reconstruction problem does not represent a
practical application, we should note that it is fundamentally as dif-
ficult as constructing an image from desired gradients, because in
both cases the solver is presented with Laplacian constraints that
are the Laplacian of some possibly unknown image.

Figure 5 plots rms and maximum error as functions of the number
of V-cycles, for B-spline elements of degree n=1,2,3, using k=2,5,8
Gauss-Seidel updates. When no relaxations are performed (at 0 V-
cycle), the zero initial solution has a maximum error that realizes
the worst possible error (1.0), but an rms error (0.1) that happens

Figure 6: Visualization of the reconstruction errors for elements of
order n=1,2,3 after a single V-cycle and k=2 Gauss-Seidel updates.

to be 10 times smaller. As expected, the error decreases steadily
with the number of V-cycles, and shows a steeper slope with more
relaxation updates. We used double-precision numbers in these ex-
periments, so the error reaches a lower bound of about 10−12.

We observe that the second-order elements provide the fastest con-
vergence rate, with a per-cycle convergence factor of about 0.0014
in this example when using 5 relaxation updates. The maximum
error appears to have the same asymptotic convergence rate.

As shown in Figure 6, using the (n=2) second-order finite elements,
the error becomes nearly invisible after a single V-cycle and just
k=2 Gauss-Seidel steps.

Spectral analysis To better understand the empirical behavior of
the different solvers, we compute the spectrum of the two-grid op-
erator T , which characterizes both the convergence of the relaxation
and the effectiveness of the inter-grid transfer (restriction and pro-
longation) between the finer and coarser resolutions.

In our experiments, T is defined as the operator that (1) performs k
Gauss-Seidel relaxation steps at the finer resolution, (2) restricts the
residual to the lower resolution, (3) performs k relaxation steps at
the coarser resolution, (4) adds the prolongation of the coarser solu-
tion to the finer solution, and (5) performs k more relaxations at the
finer resolution. We assume simple periodic boundary conditions.

Figure 7 plots the magnitudes of the 64 largest eigenvalues of the
two-grid operator T computed for a 32× 32 grid using elements
of degree n=1,2,3 with k=2,5,8 Gauss-Seidel updates. Even though
the operator T is not symmetric and the eigenvalues may be com-
plex, the fact that all eigenvalues have magnitude less than one
guarantees that the solvers converge to the correct solution. The
relative magnitudes of these spectra explain the empirical results
seen above. Independent of the number of Gauss-Seidel updates
used, the solvers using second-order elements have smaller spectra



Figure 7: Plots of the 64 largest eigenvalue magnitudes for the two-grid linear operators computed on a 32×32 grid using B-spline elements
of degree n=1,2,3 with k=2,5,8 Gauss-Seidel updates. Independent of the number of Gauss-Seidel updates used, the operators associated with
the second-order solvers have the smallest magnitude eigenvalues, resulting in the fastest convergence.

than either first- or third-order solvers, thus explaining their faster
convergence in Figure 5.

We believe that the slow convergence of the third-order finite el-
ements is due to the increased support size of the third-order ele-
ments. When performing the Gauss-Seidel updates, the update of
the i-th coefficient is performed under the assumption that all other
coefficients of the solution are fixed. However, a subsequent up-
date of the j-th coefficient can adversely affect the solution at the
i-th coefficient if the value of the (i, j)-th entry in the Laplacian
matrix is nonzero. Since the entry is nonzero precisely when the
supports of the associated functions overlap, increased support size
can detrimentally affect the solver by reducing the optimality of the
individual coefficient updates.

Parameter selection In our out-of-core streaming implementa-
tion, we find that the runtime bottleneck is disk I/O rather than
computation. So, we select parameters that provide a sufficiently
accurate solution with a minimum number of V-cycles. In the con-
text of 8-bit/channel image processing, we desire a solution with
maximum error that is less than 1/256≈ 4×10−3, a condition that
can be satisfied using second-order elements with a single V-cycle.
In all our application results, we use second-order elements, with a
single V-cycle, and five Gauss-Seidel updates.

8 Implementation

Maximizing disk throughput We transfer data to and from disk
in large blocks (4MB) to minimize disk latency overhead, and
thereby reach maximum disk bandwidth (about 30-40MByte/sec
on a laptop PC). To obtain large block transfers, we initiate all
I/O asynchronously in one separate thread. Because all streams
advance sequentially at constant rates, we can precisely determine
which data block will result in the earliest buffer underflow or over-
flow, and initiate the corresponding data read or write.

In addition, we obtain a 2X speed improvement by storing the inter-
mediate u, f floating-point values on disk at half precision. Though
this results in some data loss due to quantization, in Section 9 we
show that sufficient accuracy is retained for performing gradient-
domain image processing – giving rise to solutions that differ by no
more than ∼ 0.03% from the true solution.

Relaxation optimization For in-memory images, computation is
the bottleneck. In particular, the slowest processing step is the
streaming Gauss-Seidel relaxation. Each Gauss-Seidel pixel update
involves a dot product of the 5×5 neighboring pixels with the 5×5

Laplacian stencil presented in Section 5.3. We optimize this com-
putation by leveraging the vertical and horizontal symmetries of the
stencil, and making use of the CPU SSE2 4-vector instructions.

Non-power-of-two images Currently we handle non-power-of-

two images by padding the input image to a resolution 2lmax−lmin

times the resolution at the coarsest level. Since our only constraint
on the resolution at the coarsest level is that it be small enough
so that using a direct solver is not computationally expensive, we
choose the coarsest resolution to be in the range [32,64]2. This
is still sufficiently small to be solved quickly with a conjugate-
gradients solver, while ensuring that the total size of the padding
is no larger than (33/32)2−1≈ 6% of the original image.

Multi-channel images Some applications such as tone-mapping
solve a Poisson equation on just the luminance of the image, while
others like stitching require a separate Poisson equation for each
color channel. Because gradient-domain processing may access the
magnitude of the full-color gradient, we interleave the per-channel
solutions to reduce the total number of passes.

9 Application results

We evaluate our streaming solver in two practical applications, im-
age stitching and tone-mapping. In both sets of experiments, no
ground-truth solution is available a priori, so we obtain one by run-
ning our solver “to completion” with double precision both in-core
and out-of-core, and using a large number of Gauss-Seidel updates
across multiple V-cycles. To validate these ground truth solutions,
we compare the size of the solution residual r = f − Lu with the
size of the constraint vector f . For all of the examples, the ratio of
the norms ‖r‖/‖ f‖ is on the order of 10−10.

All experiments are run on a notebook PC with a 2.2GHz Core 2
Duo processor and 4 GB of RAM. Timings include the I/O to read
the gradient field ~g from disk and to write the JPEG-compressed
output image to disk, except for results labeled “in-core”. The ini-
tial solution u is set to zero in all experiments.

Image stitching Given a set of registered, segmented images, we
combine them seamlessly into a single coherent image. We follow
the approach of [Pérez et al. 2003; Agarwala et al. 2004], generating
a vector field by copying the gradient values from the constituent
images (zeroing out the gradients across the seams) and then solv-
ing the Poisson equation to get back the single image whose gradi-
ent most closely approximates the vector field.



19,588×4,457 (87-megapixel) panorama stitched from 9 photos

Close-ups, comparing direct copying of source image pixels

Figure 8: Example result of image stitching, obtained by copying
the image gradients and solving the Poisson equation. (Data is cour-
tesy of Aseem Agarwala.)

Image Size Rms error Max error Mem. (MB) Time (s)

name (MP) SM QT SM QT SM QT SM QT

Streaming in-core solver

Beynac 12 4·10
−5 4·10

−5 2·10
−4 5·10

−3 670 16 10 8

Rainier 23 2·10
−5 6·10

−5 2·10
−4 4·10

−3 1311 27 21 14

Streaming out-of-core solver

Beynac 12 4·10
−5 4·10

−5 3·10
−4 5·10

−3 190 16 17 8

Rainier 23 3·10
−5 6·10

−5 3·10
−4 4·10

−3 110 27 33 14

Edinburgh 50 2·10
−5 † 3·10

−4 † 203 123 79 122

Redrock 87 5·10
−5 † 4·10

−4 † 133 112 118 118

St. James 3,342 2·10
−4 6·10

−4 408 5,270

St. James(log) 3,342 1·10
−4 1·10

−3 408 5,310

Table 2: Solution error, peak memory usage, and running times
for several image stitching experiments, comparing the results of
our streaming multigrid (SM) solver with the quadtree (QT) solver
of Agarwala [2007]. †Obtaining ground truth solutions on large
images was impractical prior to our streaming multigrid scheme.

An example result is presented in Figure 8. As highlighted by the
zoomed regions, stitching in the gradient domain eliminates the
seam discontinuities at the image boundaries that would otherwise
be apparent in the color composite (e.g. due to change in atmo-
spheric conditions, exposure settings, etc. between snapshots).

We compute the solution errors, memory usage, and running times
for a number of stitching examples. The in-core results store the
temporary data values in 32-bit floats, while the out-of-core results
use 16-bit floats. Table 2 summarizes the results, and presents a
performance comparison of our streaming multigrid (SM) solver
with the domain-specific quadtree (QT) solver of Agarwala [2007].
Despite the fact that the streaming multigrid solver is tailored to-
wards solving a more general Poisson equation and therefore has
time complexity that is linear on the number of pixels, it compares
favorably with Agarwala’s adaptive method – always providing a
solution with smaller maximum error, and having comparable run-
ning times at higher resolutions.

The results also show that our out-of-core streaming algorithm op-
erates in a small memory footprint, approximately the same size
as that used by the quadtree solver for the higher resolutions. The
memory footprint of the streaming algorithm is linear on just the
width of the image, i.e. usually the square-root of the number of
pixels. In particular, for this application, the memory footprint is
independent of the seam complexity, unlike in the QT solver.

Input image (16,950×2,956; 50 megapixels)

Output image

Close-up comparisons

Figure 9: Example result of tone-mapping, obtained by nonlinearly
modulating log-luminance gradients.

Image Size Rms Max Memory Time

name (MP) error error (MB) (s)

Ocean† 1 7·10
−5 2·10

−3 29 0.3

Edinburgh 50 2·10
−3 5·10

−3 279 37

St. James 3,342 3·10
−4 2·10

−3 224 2,710

Table 3: Solution error, peak memory usage, and running times for
several tone-mapping experiments. All errors are fractions of the
input range. †For small images, results are solved entirely in-core.

Tone-mapping Given a single (possibly HDR) image, we per-
form tone-mapping to locally adjust the image contrast. We fol-
low the approach presented in [Fattal et al. 2002], computing the
log-luminance gradients, non-linearly attenuating them, solving the
Poisson equation, and exponentiating the result to obtain the new
image luminance.

The tone mapping problem is more challenging than image stitch-
ing because the difference image, obtained by subtracting the origi-
nal image from the tone-mapped image, can have high-frequency
components at arbitrary pixel positions. Consequently, adaptive
methods cannot be applied, and the Poisson system must be solved
at full resolution over the entire grid. In the past, this fact made
it computationally infeasible to perform tone mapping on high-
resolution images. Our streaming multigrid solver is the first system
that can solve the associated Poisson equation in time that is linear
on the number of pixels, and in a memory footprint that is linear on
the image width.

Figure 9 shows an example result. As is highlighted by the zoomed-
in regions, performing this type of non-linear attenuation provides
a way to adaptively bring out detail in low-contrast regions. Ta-
ble 3 summarizes the results on several examples. The execution
times are faster than in the image stitching application for the same
number of pixels because here the Poisson equation involves only a
single channel (luminance).

Tone-mapping is performed in log-luminance space to better ap-
proximate perceived image brightness, so any error in the Poisson
solution is exponentiated in the final image. Despite the fact that we
measure errors in the final linear-space RGB image, we still obtain
an accurate solution, with maximum errors on the order of 1/255.



(a) Mosaic of 643 input photographs with differing exposures

(b) Result of stitching the images in linear RGB space

(c) Result of stitching the images in log-RGB space

(d) Result of tone-mapping (c) in log-luminance space

Figure 10: Result of stitching and tone-mapping at full resolution
on a 88,309×37,842 (3.3-gigapixel) domain. (Data is courtesy of
Matthew Uyttendaele.)

Gigapixel stitching and tone-mapping A challenge in stitch-
ing gigapixel images composed of hundreds of photographs is that
due to the extreme lighting variations across the panorama, the
photographs are usually taken under different exposure settings.
Figure 10a shows an example of such a panorama, consisting of
643 photographs forming a 88,309×37,842 image (same data as
in [Kopf et al. 2007b]). Automatic exposure settings are revealed
by large brightness variations between adjacent photographs.

Applying our streaming multigrid technique, we can obtain three
different seamless panoramas.

Performing traditional image stitching in the RGB space of the
input photographs successfully removes the seam boundaries be-
tween the photographs, as shown in Figure 10b. However, the solu-
tion image may not capture the true scene contrast.

A better approach is to perform image stitching in log-RGB
space [Szeliski et al. 2008]. To an approximation, changing the
exposure of an image amounts to multiplying the pixels’ RGB val-
ues by a fixed constant. Because this multiplicative factor becomes
a constant additive offset in log-RGB space, the effects of exposure
vanish after gradient computation. After stitching the gradients of
the log-RGB values, the exponentiated Poisson solution gives the
HDR image shown in Figure 10c. We observe that the rightmost
portion of the image seems overly bright, and believe that this is
due to saturation in the source photographs.

Figure 10d shows the result of applying a tone-mapping operation
to convert the stitched HDR result to an LDR image, using a second
application of the streaming multigrid solver. The error, memory
size, and execution time are shown in the last row of Table 3.

For this example dataset which has a row size of 88,000 pixels,
our implementation can perform the entirety of the computation in
under 500 MB of memory. Extrapolating this, a commodity PC
with 2 GB memory should be able to handle a row size of 352,000
pixels, i.e. a 53-gigapixel image with the same aspect ratio.

10 Conclusions and future work

Streaming multigrid is a novel out-of-core technique for solving
large global linear systems while requiring only local access and
a few passes of sequential I/O, as demonstrated here for gradient-
domain processing of huge images. It is able to solve general Pois-
son equations that cannot be adapted to a quadtree.

We have shown that a finite-element formulation, in which the im-
age is interpreted as a continuous function, is compatible with the
traditional setting of desired pixel differences. The resulting relax-
ation and inter-grid transfer operations require more local compu-
tation but achieve faster convergence. Thus a single V-cycle often
suffices for an accurate solution in the context of image processing.

Our current system provides a solution to the Poisson equation on a
2D domain with Neumann boundary conditions. Some gradient-
domain applications require that the solution conform to given
boundary colors. We think that our approach could be extended to
support such Dirichlet boundary value-constraints by appropriately
modifying the 2D stencils and the construction of the constraint
vector f . Introducing a soft constraint to match some original im-
age u0, i.e. min‖∇u−~g‖2 +λ‖u−u0‖

2, may also be achievable by
modifying the 2D stencils and letting u0 contribute to f . Support-
ing Dirichlet boundaries with irregular shape might be approached
using a method akin to web-splines [Höllig et al. 2001].

Other gradient-domain techniques involve a weighted minimization
‖w(∇u−~g)‖ where w(x,y) is a spatially varying 2× 2 diagonal
matrix that weights differences in x and y independently. We believe
that our general philosophy of using streaming to minimize memory
bandwidth could still prove useful in this setting.

The efficiency of streaming multigrid relies on the local support of
the relaxation operator. While our work has focused on the Lapla-
cian ∆U = Uxx +Uyy (also used for wave propagation, diffusion,
electrostatics, etc.), streaming multigrid should extend to other dif-
ferential operators, such as convection-diffusion−ε ∆U +aUx, and
the Bilaplacian ∆2U = Uxxxx +2Uxxyy +Uyyyy (for linear elasticity,
Stokes flows).

It would be interesting to reduce disk bandwidth by using (very fast)
compression and decompression of the streamed temporary data.
Finally, there are exciting opportunities for parallelization of the
streaming computation on many-core CPUs or GPUs, for instance
by partitioning image rows.
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