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Abstract

We recently introduced an algorithm for spherical parametrization and remesh-
ing, which allows resampling of a genus-zero surface onto a regular 2D grid,
a spherical geometry image. These geometry images offer several advantages
for shape compression. First, simple extension rules extend the square im-
age domain to cover the infinite plane, thereby providing a globally smooth
surface parametrization. The 2D grid structure permits use of ordinary im-
age wavelets, including higher-order wavelets with polynomial precision. The
coarsest wavelets span the entire surface and thus encode the lowest frequen-
cies of the shape. Finally, the compression and decompression algorithms op-
erate on ordinary 2D arrays, and are thus ideally suited for hardware ac-
celeration. In this paper, we detail two wavelet-based approaches for shape
compression using spherical geometry images, and provide comparisons with
previous compression schemes.

1 Introduction

In previous work [20], we introduce a robust algorithm for spherical parametriza-
tion, which smoothly maps a genus-zero surface to a sphere domain. This
sphere domain can in turn be unfolded onto a square, to allow remeshing of
surface geometry onto a regular 2D grid — a geometry image. One important
use for such a representation is shape compression, the concise encoding of sur-
face geometry. In this paper, we explore the application of shape compression
in more detail, describing two wavelet-based approaches.

As we will show, spherical geometry images are a powerful representation
for the concise description of shape.
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2 Related work on shape compression

The compression of geometric shape has recently been a very active area
of research. Since we will not be able to cover every paper here, we refer
the reader to recent comprehensive surveys [3, 10, 22]. The many compres-
sion techniques can be categorized into two broad approaches: irregular mesh
compression and remeshing compression, depending on whether or not they
preserve the original mesh connectivity.

Irregular mesh compression

Preserving the connectivity of the original mesh is important for accurately
modeling sharp features such as creases and corners, particularly in manufac-
tured parts. Also, meshes designed within graphical modeling systems may
have face connectivities that encode material boundaries, shading discontinu-
ities, or desired behavior under deformation.

The compression of irregular meshes involves two parts: connectivity and
geometry. The mesh connectivity is a combinatorial graph; it can be encoded
using approximately 2 bits per vertex [2]. The mesh geometry is given by
continuous (x,y,z) vertex positions; these are typically quantized to 10, 12, or
14 bits per coordinate prior to entropy coding.

The compression of irregular meshes was pioneered by Deering [8], who
describes a scheme for streaming decompression in the graphics system.
Gumhold and Strasser [12] advance a front through a mesh using a state ma-
chine, and compress the necessary state changes. Touma and Gotsman [28] use
a similar technique based on vertex-valence encoding. Many other papers have
refined this approach, including the Edge Breaker scheme of Rossignac [21]
and several methods for non-triangular meshes.

Several schemes support progressive representations, whereby coarser ap-
proximations can be displayed as the data stream is incrementally received.
These include progressive meshes [14], progressive forest split compression [27],
and the valence-driven simplification approach of Alliez and Desbrun [2].

Compressing the geometry of irregular meshes is difficult because the irreg-
ular sampling does not admit traditional multiresolution wavelet hierarchies.
Most compression schemes predict the position of each vertex from its par-
tially reconstructed neighborhood. A good example is the “parallelogram rule”
of Touma and Gotsman [28]. The drawback of basing the prediction model on
a local neighborhood is that it cannot capture the low-frequency features of
the model. In other words, the local prediction rules cannot give rise to the
broad basis functions that one would obtain in the coarsest levels of a tra-
ditional multiresolution hierarchy. One exception is the scheme of Karni and
Gotsman [15], which constructs smooth basis functions using spectral analysis
of the mesh adjacency matrix. However, this spectral analysis is costly and
unstable, and therefore becomes practical only when performed piecewise on
a partitioned model.
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Remeshing compression

For many applications, preserving the connectivity of the given mesh is un-
necessary. In particular, many models are obtained through 3D scanning tech-
nologies (e.g. laser range scanners, computed tomography, magnetic resonance
imaging), and the precise connectivities in these dense meshes is somewhat
arbitrary. Since shape compression is generally lossy, resampling the geometry
onto a new mesh (with different connectivity) is quite reasonable.

In the remeshing approach of Attene et al. [5], an irregular-mesh compres-
sion algorithm resamples geometry as it traverses the mesh, by incrementally
wrapping the mesh with isosceles triangles.

A number of methods use a semi-regular remeshing structure. Such a
remesh is obtained by repeated quaternary subdivision of a coarse triangle
mesh (i.e. each triangle face is regularly subdivided into 4 sub-faces). Louns-
bery et al. [19] develop a wavelet-like framework over these semi-regular struc-
tures. Eck et al. [9] present a scheme for semi-regular remeshing of arbitrary
triangle meshes, and achieve shape compression by removing small wavelet
coefficients. Khodakovsky et al. [16] obtain better compression results using
zero-trees; also, they express wavelet coefficients with respect to local surface
coordinate frames, and assign fewer bits to the tangential components of the
wavelet coefficients. The globally smooth parametrization of Khodakovsky et
al. [18] reduces the entropy of these tangential components by constructing a
remesh that is parametrically smooth across patch boundaries. The “normal
mesh” representation of Khodakovsky et al. [17] attempts to remove tangen-
tial information altogether; each subdivision of the remesh is obtained by
displacing most of the newly introduced vertices along the surface normal;
only a small fraction of vertices require full 3D vector displacements.

Another approach, and the one pursued in this paper, is to form a com-
pletely regular remesh. As shown by Gu et al. [11], an arbitrary mesh can be
resampled onto a regular 2D grid, a geometry image. The given mesh is cut
along a network of cut paths to form a topological disk, and this disk is then
parametrized over a square. The geometry image is obtained by creating a reg-
ular grid over the square and sampling the surface using the parametrization.
Due to their simple regular structure, geometry images can be compressed
using ordinary 2D image wavelets. However, one difficulty is that lossy de-
compression leads to “gaps” along the surface cut paths. Gu et al. [11] over-
come these gaps by re-fusing the boundary using a topological sideband, and
diffusing the resulting step function into the image interior.

In this work, we construct geometry images for genus-zero surface using
a spherical remeshing approach, as described in the next section. By defining
spherical extension rules beyond the geometry image boundaries, we avoid
boundary reconstruction problems altogether.



4 Hugues Hoppe and Emil Praun

Map of original mesh onto sphere, octahedron domain, and image

Illustration of the same map using image grid samples

Map of original mesh onto sphere, flat octahedron domain, and image

Illustration of the same map using image grid samples

Fig. 1. Illustration of remeshing onto octahedron and flat octahedron domains
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Original meshes

Spherical parametrizations

Flat-octahedron geometry images (lit)

Fig. 2. Spherical parametrization and remeshing applied to the 4 test models. The
geometry images are shown shaded to better illustrate the parametrization.

3 Review of spherical parametrization and remeshing

In previous work [20] we have presented a method for parametrizing a genus-
zero model onto the sphere and remeshing it onto a geometry image, as il-
lustrated in Figs. 1 and 2. Since the geometric signal is too smooth to be
visualized by directly mapping (x,y,z) to the (R,G,B) channels of an image,
we chose to visualize these geometry images in a different way. We compute for
each pixel an approximated normal by taking neighbor differences, and shade
the geometry image based on these normals (using two antipodal lights).

Spherical parametrization

The first step maps the original surface onto a sphere domain. For genus-
zero models, the sphere is the most natural domain, since it does not require
breaking the surface using any a priori cuts, which would otherwise artificially
constrain the parametrization.
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To be suitable for subsequent remeshing, the spherical map must satisfy
two important properties: (1) it must be one-to-one, and (2) it must allocate
enough domain area to all features of the mesh. Our spherical parametrization
achieves these goals by employing a robust coarse-to-fine construction, and by
minimizing a stretch distortion measure to prevent later undersampling.

Coarse-to-fine construction. The mesh is converted to a progressive mesh
format [14] by repeatedly applying half-edge-collapse operations. For trian-
gulated genus-zero models, one can always reach a tetrahedron as the base
domain [25]. This base tetrahedron is mapped to a regular tetrahedron in-
scribed in the unit sphere. We then visit the progressive mesh sequence in
coarse-to-fine order, adding vertices back into the mesh and mapping them
onto the sphere. To guarantee that the map is one-to-one, a vertex must lie
inside the kernel of the spherical polygon formed by its neighbors. Fortunately,
if the map is one-to-one prior to inserting a new vertex, it can be shown that
the new vertex’s neighborhood is always non-empty, and thus new vertices can
always be inserted into the parametrization while maintaining a bijection.

Stretch metric. To adequately sample all the features of a model, we em-
ploy a parametrization distortion metric based on stretch minimization. We
minimize this nonlinear metric each time a new vertex is introduced, by lo-
cally optimizing its location and those of its immediate neighbors. Each time
the number of vertices grows by factor of 1.5, we also perform a global pass,
optimizing all vertices introduced so far. When optimizing any vertex, we
constrain it to the kernel of its neighborhood, to prevent flips. Degenerate tri-
angles are prevented naturally by the stretch metric, which becomes infinite
in that case.

Spherical remeshing

Once we have a spherical parametrization for the mesh, we seek to resample
the sphere onto a geometry image. For simplicity, this image should be square
and should have simple boundary conditions. We have explored two schemes
for unfolding the sphere onto the square, one based on a regular octahedron
domain and the other based on a flattened octahedron domain (see Fig. 1).
In either case, we regularly subdivide the octahedron, and map it to the
sphere using the spherical parametrization procedure described earlier. (The
one difference is that we measure stretch in the opposite direction, from the
domain to the sphere.)

The samples of the octahedron are then associated with the grid locations
of a square geometry image by cutting four edges of the octahedron meeting at
a vertex, and unfolding the four faces incident to the vertex like flaps. In Fig. 1,
rows 2 and 4 illustrate the sampling pattern imposed by the regular grid. For
the octahedron, we use the linear 3-tap triangular reconstruction filter, and
the filter footprint varies across the four quadrants of the geometry image,
according to the faces of the base octahedron (shown in different colors for
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easy identification). For the flat octahedron, we use the traditional 4-tap bi-
linear reconstruction filter, and this filter is uniform across the whole geometry
image.

The geometry of the regular octahedron corresponds nicely with the use
of spherical wavelets (Section 4.1), since it offers derivative continuity across
edges under the equilateral triangle sampling pattern. Similarly, the geometry
of the flattened octahedron corresponds with the use of image wavelets (Sec-
tion 4.2), since the flattened octahedron unfolds isometrically (i.e. without
distortion) onto the square image.

original
meshSpherical 

remeshing

Wavelet 
transform

level l

Entropy
coding

coarse level l-1

detail level l
Local  

frame xform levels 1..L

iterate l=L-1..1
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base level 0 Quantization

compression

Wavelet 
transform

level l

coarse level l-1

detail level l
Local  
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Fig. 3. Overview of compression process

4 Compression using spherical geometry images

To compress a model, we first apply a wavelet transform to the geometric
signal, using either spherical wavelets or image wavelets. The bands resulting
from the wavelet transform are then run through a general-purpose quantizer
and entropy coder [7]. The process is summarized in Fig. 3, and in the pseudo-
code of Fig. 4.

Previous research [13] has shown that the geometric information associated
with displacement of samples from their predicted location along the surface
normal is more important than the “parametric” information associated with
the tangential components of the displacement. Accordingly, we express the
fine-scale detail (the high-pass bands or wavelet coefficients from each step
of the wavelet transform) in local coordinate frames predicted using the low-
pass band. During the quantization and entropy coding, we assign greater
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Compression:

Read finest level L

For all levels from fine to coarse: l = L .. 1:

- identify "even" grid locations (i.e. those in coarser level l-1)

- apply low-pass analysis filter centered on "even" samples

- apply high-pass analysis filter to other ("odd") samples

(if low-pass or high-pass filter kernels reach outside

the geometry image, use boundary extension rules)

- gather all "even" samples into coarse level l-1

- gather all "odd" samples into detail plane(s) for level l

- using level l-1, compute local tangential frames for samples on

detail plane(s) of level l

- express detail in local tangential frames

Run coarsest level 0 and all detail planes for levels 1..L

through quantizer and entropy encoder to achieve target bit budget

Decompression:

Run entropy decoder and dequantizer to produce coarsest level 0

and detail planes for levels 1..L

For all levels from coarse to fine l = 0 .. L-1:

- using level l, compute local tangential frames for samples in

detail plane for level l+1

- transform detail from local frames to absolute coordinates

- apply synthesis filter to level l to predict level l+1

- apply synthesis filter to detail plane(s) for level l+1

and combine with prediction to produce level l+1

(using boundary extension rules as necessary)

Output finest level L

Fig. 4. Pseudo-code for the compression and decompression algorithms

perceptual importance to transformed components normal to the surface than
to the tangential components (we found a factor of 3 to give the best results
for our models).

Note that the compression and decompression are lossy, and that the quan-
tization errors combine non-linearly. For example, if a coarse level is recon-
structed inexactly, the errors are not simply added to the final result; they
additionally cause small rotations of the local coordinate frames transforming
the detail for the finer levels.

For the wavelet compression/decompression stage we present two alterna-
tive schemes. The first is based on spherical wavelets introduced by Schröder
and Sweldens [24]; the base (coarsest) sampling level is an octahedron, and
progressively finer levels are obtained by applying standard subdivision rules
such as Loop or Butterfly. The second is based on image wavelets. Both
schemes are interesting to consider since they offer different advantages. The
mesh-based spherical wavelet scheme seems more natural for coding geome-
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try, and provides good reconstruction of sharp detail at very low bit budgets.
The image based method is easier to implement (just by modifying one of the
many existing image coders), and benefits from a large body of research into
image wavelets that resulted in well optimized wavelet bases with large sup-
port [4]. After presenting the implementation of both methods in this section,
we contrast their results in Section 5.

4.1 Spherical Wavelets

Rather than having a complicated pointer-based mesh data structure, we can
apply all the mesh processing operations directly on the geometry image of
the unfolded octahedron by manipulating grid location indices. The vertices
of the base octahedron correspond to the samples at the corners, boundary
midpoints, and center of the geometry image. The vertices of the octahedron
subdivided k times will be at locations (i∗2L−k, j ∗2L−k), for 0 ≤ i, j ≤ 2k+1,
where L is the finest level. Two samples on a given level are neighbors in
the subdivided octahedron if they are 4-adjacent in the grid restricted to the
samples on that level, or linked by a diagonal. The orientation of this diagonal
is determined by the image quadrant, i.e. “forward slash” for the upper left
and lower right one, and “backward slash” for the other two. This distinction
in the use of diagonals is needed because the sample connectivity in the grid
is not arbitrary but is inherited from the subdivided octahedron. We check
the quadrant at the midpoint between the two samples, to avoid ambiguities
created when one of the samples is a vertex of the base octahedron. Using this
simple set of rules, we efficiently gather the neighbors of a vertex on a given
level, to form the stencils required for wavelet analysis and synthesis (e.g. the
green stencil in Fig. 5).

Fig. 5. Spherical wavelets on the unfolded octahedron geometry image. The green
and red regions highlight two Butterfly stencils at different subdivision levels. Since
the red stencil reaches outside the image, it uses boundary extension rules.
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Fig. 6. A spherical geometry image and its infinite tiling in the plane. The
parametrization is globally smooth except at the image boundary midpoints.

Boundary extension rules. To complete the wavelet transform stencils
corresponding to samples near the boundaries we sometimes need to “hal-
lucinate” values outside the square grid of values. Standard tricks used in
signal processing to extend an image beyond its borders include replicating
the boundary samples or reflecting the image across its boundaries. These
methods provide a continuous signal, but introduce derivative discontinuities
in the infinite lattice produced, and discontinuities are more expensive to code
than smooth signals. Instead of using the standard tricks, we designed differ-
ent boundary extension rules for our unfolded octahedron geometry image,
which do produce an infinite lattice with derivative continuity. The general
idea for these rules is that whenever we must “march” outside the image across
a boundary to produce a sample, we flip the image (such that the boundary
is mapped onto itself by a 180-degree rotation) and return the value located
there (e.g. the red stencil in Fig. 5). Considering the image samples to be
labeled in row-major order, starting from 0 (so samples in the left column
are (0,j)), the rules are I(−i, j) = I(i, n − 1 − j), I(i,−j) = I(n − 1 − i, j),
I(n−1+i, j) = I(n−1−i, n−1−j) and I(i, n−1+j) = I(n−1−i, n−1−j),
where n = 2k + 1 is the number of rows and columns. This is equivalent to
filling the infinite plane of all sample locations by rotating the original image
around the boundary midpoints (see Fig. 6). The infinite lattice produced is
continuous everywhere and derivative continuous everywhere except at the
repeated instances of the four boundary midpoints (dots in the figure).

Note that for i, j = 0 and i, j = n − 1, the rules provide constraints on
the boundaries rather than a way to extend the image outside its borders.
Therefore, to avoid sample duplication we also consider the right half of the
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top and bottom boundaries of the geometry image and the lower half of the
left and right boundaries to be “outside” the image (so we map those locations
to the surviving half of the same boundary, using the extension rules). These
“outside” boundary grid locations are not processed by the quantizer and
entropy coder.

Local tangential frame. We use the lifted Butterfly scheme, as described
in [24]. We compute a normal for each “odd” sample by averaging the normals
of the faces from the Butterfly stencil (with weights 1,4,1,1,4,1). Note that the
vertices of these faces are all “even” vertices. The Y coordinate of the frame is
obtained as the cross product between this normal and the row direction in the
grid of samples (obtained from differences of neighboring samples, similarly
to the image wavelet case). We take a cross product again to obtain the X
axis of the frame.

4.2 Image Wavelets

The other scheme we consider is based on image wavelets, using the flat octa-
hedron parametrization. We use a general-purpose wavelet-based image com-
pression package [7], modified to make use of boundary extension rules and
local tangential frame coding.

Boundary extension rules. These rules come into play during both com-
pression and decompression phases when we are applying a signal processing
kernel to a sample that is closer to the image boundary than the kernel width
(see Fig. 7). In these cases, we have to “hallucinate” samples for the grid
locations outside the original image. Similarly to the spherical wavelets case,
we fill these grid locations using boundary extension rules.

For image wavelets there are two types of rules, depending on whether
the image boundary is located “on” the samples or “between” samples. To
simplify the discussion, let’s assume we need a sample located outside the
image across the left boundary. The first case corresponds to the original un-
folded octahedron, and all the coarser levels. These levels have 2k +1 columns,
and the left column is constrained: sample I(0, j) must be equal to sample
I(0, nr − 1 − j), where nr is the number of rows. In this case, the reflection
rule is the same as in the spherical wavelets case I(−i, j) := I(i, nr − 1 − j).

The second type of extension rules apply to the detail planes obtained
from the image wavelet transform. Some of these images have a number of
columns equal to 2k rather than 2k + 1 and lack the left boundary with
constrained samples. Specifically, the image wavelet transform uses separable
filters, so to apply a 2D transform, it first applies a 1D transform to all the
rows, producing images L and H (see Fig. 8) and then a 1D transform to all
the columns, producing images LL, LH, HL, and HH. Planes with an even
number of columns (such as H, HL, and HH) lack the leftmost boundary with
constrained samples, and use a reflection boundary located “between” grid
locations: I(−i, j) := I(i − 1, nr − 1 − j). Intuitively, in the geometry image
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Fig. 7. Effect of domain extension rules on wavelet basis extents using the flat
octahedron image wavelets.

L H

LL HL

LH HH

2k-1+12k+1 2k-1

Fig. 8. Wavelet transform of an image level. Applying a 1D transform to each row
results in a low-pass plane L and a high-pass (detail) one, H. After a 1D transform
on each of the columns, we get the coarser level LL, and three detail planes. The
thick boundary edges have flip-symmetry constraints.

case, when we go outside the image across a “fat” edge in Fig. 8, we come
back inside the image across the same boundary, skipping the sample on the
boundary itself, while in the case of a dotted boundary edge of a detail plane
in Fig. 8 we don’t skip the sample on the boundary.

Similarly to the spherical wavelets case, the first type of boundary rules
applied to the samples on the boundary provide constraints, rather than ways
to extend the image. During the compression phase, those constraints are sat-
isfied since the original geometry image was constructed using them. However,
since the whole compression/decompression process is lossy, the constraints
may be unsatisfied during decompression. To ensure that the resulting model
is crack-free, we enforce the constraints at all the resolution levels during de-
compression. After we recover a level, before using it to produce the local frame
and the coarse approximation for the next level, we first average together the
samples on the boundary that should be equal (for example, samples (i, 0) and
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(n− 1− i, 0) on the top row of the image are averaged together and set to the
resulting value). Pairs of corresponding locations on the image boundaries are
averaged together, and the four corners are also averaged and kept consistent.
It is advantageous to enforce consistency at all the resolution levels, rather
than just once at the end, in order to avoid “step functions” from appearing
in the result.

The boundary rules benefit the compression/decompression algorithm in
two ways. First, they maintain consistency between samples on the bound-
aries, preventing cracks in the 3D model corresponding to the geometry image.
Second, they help the prediction for the samples near the boundaries, since
the image signal appears smooth not only in the interior of the image but also
near its borders (see Fig. 6).

An important thing to note is the fact that applying a symmetric filter
kernel to a lattice satisfying the boundary extension rules will result in a new
lattice with the same extension rules. We make use of this fact since we rely
on the extension rules at all the resolution levels, not just the finest resolution
geometry image. For arbitrary kernels, one would need to store two instances
of the processed image, one with the kernel itself and one with the reflected
kernel, in order to be able to represent the whole new infinite lattice. This
would be a significant drawback for compression, since the bit budget would
double. We therefore use wavelets based on symmetric kernels.

Local tangential frame. To compute a local frame for each “odd” sample,
we first obtain vectors corresponding to the row and column directions of the
grid. If the sample is on an even row (and necessarily an odd column), we get
the row direction from the difference of the two neighboring (even) samples
in the same row. If the sample is from an odd row, we average the directions
computed using the two adjacent even rows. We compute the column direction
in a similar fashion. Taking the cross product of the two vectors we obtain the
normal direction, which we cross with the column direction to get the X axis.
The Y axis is obtained by cross product between the normal and X. Finally
we normalize the three vectors composing the frame.

Implementation details. We used the Antonini [4] image wavelet bases,
which are symmetric separable kernels with 7 entries for the 1D high-pass
and 9 entries for the low-pass. Since the wavelet kernels have large support,
we do not apply the wavelet transform all the way down to the 3x3 image,
but instead use a fixed number of stages (specifically, 5), starting from a fine
513x513 geometry image.

5 Results and discussion

We have run compression experiments using the 4 test models shown in Fig. 2.
The spherical parametrization process took 1–3 minutes on the original meshes
with 28–134K faces. (This significant improvement in processing times over
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those reported in [20] are simply due to code optimization.) The given models
were remeshed into geometry images of size 513x513 and then compressed.

The results for both spherical wavelets and image wavelets are shown in
Figs. 9–12. The rightmost images show each shape compressed to approxi-
mately 12,000 bytes. At this compression rate, the geometric fidelity is excel-
lent, and these images should be considered as references for the more aggres-
sive compressions to their left. At approximately 3,000 bytes (middle images),
compression effects become evident in the blurring of sharp features. At 1,500
bytes (left images), effects are even more pronounced. It is interesting however
that 1,500 bytes is generally sufficient to make the object recognizable.

The graphs in Figs. 9–12 show Peak Signal-to-Noise Ratio (PSNR) graphs
for each model. We compare our rate-distortion curve with those of pro-
gressive geometry compression (PGC) [16], globally smooth parametrization
(GSP) [18], and normal mesh compression (NMC) [17]. Also included for com-
parison is the irregular mesh compression scheme of Touma and Gotsman [28]
(which preserves mesh connectivity). As can be seen from the graphs, our
rate-distortion curves are generally better than PGC, but just below GSP
and NMC.

The spherical wavelets generally offer better visual reconstruction, as is
most evident on the skull model (Fig. 10). The reason is that the spherical
wavelet kernels have more localized support than the particular image wavelets
that we used, and therefore adapt more quickly to the fine detail. However, the
PSNR graphs indicate that the error as measured using L2 Hausdorff distance
is generally lower when using the image wavelets. Thus, it can be argued that
L2 error is not an accurate visual norm [28], and that one should attempt
to recover high-frequency detail first [26]. A more comprehensive comparison
using other image wavelets (with more local support) would be useful.

The horse model (Fig. 12) shows a limitation of our spherical parametriza-
tion approach. For shapes containing many extremities, the parametrization
onto the sphere suffers from distortion, and these distortions give rise to rip-
pling effects under lossy reconstruction. In such cases, our compression is much
less effective than semi-regular remeshing.

6 Summary and future work

We have described a spherical parametrization approach to remeshing genus-
zero surfaces for shape compression. The surface is remeshed into a regular 2D
grid of samples, which is then compressed using wavelets. The compression
and decompression algorithm have great potential for hardware acceleration,
since they do not involve any pointer-based data structures. We have pre-
sented a wavelet scheme based on ordinary 2D image wavelets, and applied it
to the spherical domain using boundary extension rules, effectively creating
spherical topology over a square domain. Like prior semi-regular remeshing
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schemes, our geometry image remeshing approach naturally supports progres-
sive compression.

Experiments show that spherical geometry images are an effective rep-
resentation for compressing shapes that parametrize well onto the sphere.
Although the scheme is robust on arbitrary models, shapes with long extrem-
ities suffer from rippling artifacts during lossy decompression. One area of
future work is to attempt to reduce these rippling effects by modifying the
parametrization process.

Also, our approach should be extended to support surfaces with bound-
aries. One possibility would be to encode a separate bit-plane indicating which
subset of samples lie in the “holes” of the remeshed model.

The accuracy of remesh representations can be improved by refitting to the
original model as an optimization (e.g. [23]). Such optimization would likely
help rate-distortion behavior, particularly using an appropriate visual error
norm. However, local geometry optimization does increase the entropy of the
“tangential” signal within the surface remesh, so it would be important to
introduce a smoothing term to minimize such entropy away from significant
geometric features.

In this work, we have used the sphere as an intermediate domain for
parametrizing a surface onto an octahedron or flattened octahedron. One
could also consider parametrizing the surface directly onto the octahedron,
thus bypassing the sphere. This task would be more challenging, since the
octahedron is not everywhere smooth like the sphere. However, it may allow
the construction of improved (more stretch-efficient) parametrizations.

Briceño et al. [6] explore the compression of animated meshes using the
geometry images of [11]. It would be interesting to apply a similar framework
using spherical geometry images.
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Fig. 9. Compression results on Venus model
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Fig. 10. Compression results on skull model
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Fig. 11. Compression results on rabbit model
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Fig. 12. Compression results on horse model
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