
Eurographics Symposium on Geometry Processing (2003)
L. Kobbelt, P. Schröder, H. Hoppe (Editors)

Smooth Geometry Images

F. Losasso1, H. Hoppe2, S. Schaefer3, and J. Warren3

1 Stanford University, 2 Microsoft Research, 3 Rice University

Abstract
Previous parametric representations of smooth genus-zero surfaces require a collection of abutting patches (e.g.
splines, NURBS, recursively subdivided polygons). We introduce a simple construction for these surfaces using a
single uniform bi-cubic B-spline. Due to its tensor-product structure, the spline control points are conveniently
stored as a geometry image with simple boundary symmetries. The bicubic surface is evaluated using subdivision,
and the regular structure of the geometry image makes this computation ideally suited for graphics
hardware. Specifically, we let the fragment shader pipeline perform subdivision by applying a sequence of masks
(splitting, averaging, limit, and tangent) uniformly to the geometry image. We then extend this scheme to provide
smooth level-of-detail transitions from a subsampled base octahedron all the way to a finely subdivided, smooth
model. Finally, we show how the framework easily supports scalar displacement mapping.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Boundary Representations

1. Introduction

Smooth surface representations are pervasive in off-line
rendering systems [e.g. DeRose et al. 1998], because they
avoid the rendering artifacts of faceted geometry, and reduce
memory requirements by allowing a more compact descrip-
tion of shape. In this paper, we present a smooth surface
scheme that can be efficiently evaluated using the fragment
shaders in currently available graphics hardware.

Graphics Hardware. GPUs are evolving from fixed func-
tion pipelines to flexible programmable processors. Fragment
shaders now support longer programs and a larger instruction
set [Lindholm et al. 2001]. Whereas vertex shaders operate
on each vertex independently, fragment shaders gather data
using texture read operations. This flexibility can be applied
to non-traditional uses, such as image-processing and non-
photorealistic effects [Mitchell 2002].

Recently, the rasterization pipeline has begun to support
floating-point types, thereby allowing geometry itself to flow
through the GPU as a texture signal. For instance, even ray
tracing computations can be implemented in the fragment
shaders [Purcell et al. 2002]. Because GPU’s contain several
fragment shaders operating in parallel, there is significant
opportunity for speed-up over a sequential CPU computation.

These fragment shaders gather data through texture accesses,
where texture elements (texels) are organized into regular
grids (1D, 2D, 3D). Signals over surfaces are thus typically
resampled into 2D images parametrized onto the surface – so
called texture atlases. In contrast, the surface geometry is
traditionally represented using irregular (triangle) meshes.

Geometry images. Managing the irregular meshes that arise
in most smooth surface representations is a daunting task for
a fragment shader program. To allow geometry to flow more
naturally as a signal through the current GPU architecture,
surfaces should be represented as regular grids if possible.

The geometry images introduced by Gu et al. [2002] repre-
sent an arbitrary surface using a regular 2D grid sampling.
To permit this sampling, the surface is parametrized onto a
square by first cutting the mesh along a network of edge
paths. The generality of the cutting procedure permits
treatment of surfaces with boundaries and of arbitrary genus.
However, the drawback in our smooth surface setting is that
the arbitrary topology of the cut can result in complicated
continuity constraints along the boundary of the square
domain.

For our purposes, we use a different parametrization for
geometry images, introduced by Praun and Hoppe [2003] and

© The Eurographics Association 2003.

original geometry image (33x33) C1 subdivision

Figure 1: Overview of our smooth surface representation.

Losasso et al. / Smooth Geometry Images

summarized in Section 4. Although the construction is
limited to closed, genus-zero meshes, it uses a much simpler,
topologically symmetric cut curve. Exploiting the symme-
tries of this cut, we develop a scheme to represent an entire
closed surface as a single uniform bicubic B-spline patch
(Figure 1). This patch is automatically C2 on its interior.
More importantly, the closed patch is also C2 along the cut
curve except at four extraordinary vertices. For these four
vertices, we develop a simple linear constraint on the
neighboring control points that ensures the closed patch is C1
at these vertices.

Subdivision. Because of the tensor-product structure, the
patch control points can be stored as a geometry image. To
render the smooth patch, we subdivide this image using the
GPU. All subdivision computations involve regular 3x3
masks. These masks are applied uniformly to the geometry
image using simple fragment shader programs. After subdi-
vision, we use a prototype RENDER_TO_VERTEX OpenGL
extension to write the subdivided image to vertex buffers for
final rendering. This scheme is easily generalized to include
continuous level-of-detail varying from a base octahedron
(generated by subsampling) to a highly subdivided, smooth
model. We also present a simple extension of the scheme to
support scalar displacement mapping.

To conclude, we compare the performances of CPU and GPU
implementations of our scheme. In practice, the GPU imple-
mentation exhibits an order of magnitude increase in
performance over the CPU version.

2. Previous work

Subdivision surfaces. Bolz and Schröder [2002] accelerate
the rendering of subdivision surfaces by exploiting SIMD
instructions on the CPU. Pulli and Segal [1996] evaluate
Loop surfaces on geometry engines by pairing up adjacent
triangles in the base mesh. The subdivided neighborhoods
then have mostly a regular 2D structure, except for auxiliary
arrays to handle arbitrary vertex valences. Bischoff et al.
[2000] process triangles individually, and use fast forward
differencing to reduce memory needs.

Polynomial surfaces. OpenGL has interface functions to
evaluate polynomial curves and surfaces. These have been
implemented within geometry engines on some SGI com-
puters, but more commonly these operations are performed
on the CPU by the driver. A similar DrawRectPatch interface
is exposed in DirectX.

Curved PN-triangles. Vlachos et al. [2001] describe a
hardware scheme that constructs a smooth patch for each
triangle in a mesh. The patch is defined using only the 3
vertex positions and normals, and therefore requires no
additional memory bandwidth. It significantly improves the
silhouettes of coarse models, but unfortunately does not
provide C1 surface continuity.

Surface splines. Several schemes represent surfaces of
arbitrary topology using a network of spline patches, e.g.
[Loop 1994, Peters 2000]. Forsey and Bartels [1988] repre-
sent intricate planar and toroidal shapes using a single B-
spline patch, but use adaptive refinement that requires a patch

network for rendering. Note that our fragment-shader-based
subdivision scheme could be used to efficiently evaluate each
individual patch in such networks.

Unlike these previous techniques, our method exploits the
powerful fragment shading pipeline of modern GPU’s to
efficiently evaluate the smooth surface. Also, we represent an
entire spherical model conveniently as a single patch.

3. Geometry image representation

Overview. Our geometry images are built by parametrizing a
given surface over an octahedral domain, and then unfolding
the domain into a square image by introducing an “X-cut”
centered at a vertex x.

a

b
d x

x x

x x

b d

c

a

c

The resulting boundary topology is extremely simple – each
side of the square has reflection symmetry about its midpoint.

This parametrized square is then sampled using a regular 2D
quadrilateral grid to create a geometry image. The entries in
the geometry image g are indexed as

1,1 1,1

1, 1 1, 1

m

m m m

g gx a x

gd b

x c x g g

−

− − −

 = =

………… …

… … ………

,

where the cut symmetry imposes the image boundary condi-
tions ,1 - ,1i m ig g= , 1, 1, -i m ig g= , -1, -1, -m i m m ig g= , and

, -1 - , -1i m m i mg g= .

We refer to the quadrilateral mesh formed by the grid g as the
opened mesh. When its boundaries are fused back together,
we refer to it as the closed mesh.

Note that the 4 corners of the opened mesh fuse into the same
vertex x, and thus this vertex x has valence 4 in the closed
mesh. Indeed, the only extraordinary (non-valence-4) verti-
ces in the closed mesh are the 4 boundary midpoints (a, b, c,
d), which have valence 2.

Bicubic surface. To define a bicubic surface from the
geometry image, we begin by padding the image with a one-
sample-wide border. These border samples are defined by
traversing across the X-cut on the closed mesh to find
neighboring interior samples. More precisely, the samples
are obtained by transitively applying the rules:

0, 2, -

,0 - ,2

i m i

i m i

g g

g g

=
=

, -2, -

, - , -2

m i m m i

i m m i m

g g

g g

=
=

 .

The bicubic surface defined by this padded geometry image is

,0 0
(,) () ()

m m

i ji j
P s t g N s i N t j

= =
= − −∑ ∑ ,

 , [1, 1]s t m R∈ − ⊂ ,

where ()N s is the uniform cubic B-spline basis function.

© The Eurographics Association 2003.

Losasso et al. / Smooth Geometry Images

Due to the symmetric structure of the padding rules, the
boundaries of this surface patch join along the X-cut to form a
closed, genus-zero surface. Note that the parametrization for
this surface patch is C2 everywhere (including its boundaries).
As a result, the corresponding surface patch is C2 everywhere
except for those points where the derivatives of the pa-
rametrization vanish identically.

Unfortunately, at the four cut vertices a, b, c, and d (which
have valence 2 in the closed mesh), the parametrization has
derivatives that are zero for any choice of g . For example,
the cut vertex ,1ha g= (with / 2h m=) has a padded
neighborhood of the form

1,2 ,2 1,2

1,1 ,1 1,1

1,2 ,2 1,2

h h h

h h h

h h h

g g g
g g g
g g g

+ −

− −

− +

… …
… …
… …
… … … … …

, (1)

Applying the tangent masks shown in Table 1 at a yield zero
derivatives independent of the values of the control points.
As a consequence, the resulting surface patch usually has a
cusp at a (see Figure 2).

However, if the position of the cut vertex gh,1 is constrained to
lie at the centroid of its four neighbors in the mesh,

()1
,1 1,1 ,2 1,2 1,24h h h h hg g g g g− − += + + + , (2)

the cusp is suppressed. In particular, the perturbed surface is
C1. Figure 2 shows the smoothing effect of this perturbation.
The appendix contains a short analysis of the smoothness of
the perturbed scheme.

geom. image g0 subdivided g3 without
constraint

with
constraint

Figure 2: Subdivision behavior near valence-2 vertex.

surface sphere flat octahedron image g

Figure 3: Geometry image parametrization.

4. Geometry image creation

Parametrization. As described in [Praun and Hoppe 2003],
surface parametrization proceeds in 3 steps (Figure 3). The
mesh is first parametrized over a sphere. This parametriza-
tion minimizes a stretch metric to reduce undersampling of
complicated geometric shapes. Second, the sphere is mapped
onto a flattened octahedron, again using a stretch-minimizing
map. Finally, the octahedron is unfolded on a square geome-
try image using the X-cut. The benefit of using a flattened
octahedron as the domain is that it unfolds isometrically.

Fitting. Next, we use this parametrization to construct a
geometry image whose associated surface patch (,)P s t
accurately fits the original surface. Of course, we cannot
simply use point samples of the original surface as the control
points for the bicubic patch (,)P s t since the B-spline
patches are approximating in nature. Instead, we sample the
original surface on a fine grid using the parametrization and
then compute the bicubic surface patch (,)P s t that best fits
the data in a least-squares sense. This optimization problem
is a linear one that we solve using sparse conjugate-gradients.
During optimization, we effectively eliminate the 4 linear
constraints at the cut vertices {a, b, c, d} by removing these
vertices from the set of free variables – they are always
defined as the centroids of their neighbors.

The bicubic surface that results from this fitting optimization
sometimes suffers from ripples (undula-
tions), as shown on the right. To obtain
a smoother surface (as in Figure 7), we
add a simple fairness functional that
measures the squared distance between
each control point and the centroid of its
neighbors. (Alternatively, we could
integrate fairness of the limit surface as
in [Halstead et al. 1993].)

The automatic preprocess to generate the geometry images
takes 10-27 minutes for the models (70K-200K faces) in this
paper on a 3GHz Pentium4 PC. The bottleneck is the spheri-
cal parametrization step.

5. Subdivision using Graphics Hardware

Bicubic subdivision. Given the closed mesh g0 associated
with geometry image g, the B-spline surface patch (,)P s t is
the limit g∞ of a subdivision process g0, g1, g2, g3,…. applied
to the initial mesh g0 (see Figure 4). Each subdivision step
gk+1=S[gk] splits all quadrilaterals into 4 children, inserting
new vertices on each edge and face. These new vertices in
gk+1 are positioned as local affine combinations of vertices gk.

g0 g1 g2 g3 …

Figure 4: Three steps of bicubic subdivision.

© The Eurographics Association 2003.

Losasso et al. / Smooth Geometry Images

()1

2

1
1

 ()1

2
1 1 ()1

4

1 1
1 1

 1

16

1 2 1
2 4 2
1 2 1

1

36

1 4 1
4 16 4
1 4 1

 1

6

1 0 1
4 0 4
1 0 1

− +
− +
− +

splitting L averaging A limit E tangent Ts

Table 1: Masks for bicubic subdivision. (Tt is Ts transposed.)

The subdivision operator S can be decomposed into two
simpler steps, a splitting step L, and an averaging step A [e.g.
Lane and Riesenfeld 1980]. For B-spline surfaces, the
splitting operator L performs bilinear quadrisection of the
faces, positioning new vertices in gk+1 at the centroids of their
neighboring 2 or 4 vertices in gk. The averaging operator A
applies a linear filter kernel to all vertices. These linear
combinations are denoted by the masks shown in Table 1.

After a finite number of subdivision steps, the vertices of the
subdivided surface gk can be sent to their limit positions pk on

(,)P s t by evaluating a limit mask E[gk]. Perturbing the
vertices to their limit position lets the mesh more closely
approximate the smooth surface (,)P s t . The normals nk to

(,)P s t at p are the cross product of two tangent vectors
computed by applying the tangent masks Ts and Tt to gk. (For
shading, nk should be unit length, so the cross product is
normalized via the function unit.)

As a concrete example, to render the bicubic surface subdi-
vided 3 times, we compute its limit positions p3 and their
normals n3 as:

g1 = A[L[g0]], g2 = A[L[g1]], g3 = A[L[g2]],

p3 = E[g3], n3 = unit[Ts[g
3]×Tt[g

3]] .

GPU-based implementation. We store geometry images in
off-screen pixel buffers containing three 24-bit floating-point
channels. We have found that 24 bits is sufficient precision
for all the necessary arithmetic. The pixel buffers are config-
ured to support both read and write operations.

All the masks in Table 1 are implemented using fragment
shader programs. As an example, let us consider the limit
operation g’ = E[g]. The buffer g is bound as the source
texture, and the buffer g’ is assigned as the rendering destina-
tion. A square is drawn that covers all the destination pixels.
The rasterizer thus generates fragments to be “shaded” by the
fragment processor for every pixel. At each pixel, the
fragment program reads the appropriate texels from the
source texture (i.e. vertices in g) and applies the appropriate
mask. The resulting floating-point coordinates are written
into the destination buffer g’.

Given an image gk of size [0..m]2, the splitting operation L[gk]
produces a new image of size [0..2m]2 by applying the masks
in Table 1. Note that this process is equivalent to bilinearly
filtering gk on the grid of half integers ranging over [0..m]2.
Since current graphics cards do not have dedicated hardware
to perform this type of filtering on floating-point textures, we
must perform the operation in a fragment program.

Given integer texture coordinates {i, j} in the range [0..2m]2,
our goal is to bilinearly sample the image gk at the half-
integer texture coordinates {i/2, j/2}. At first glance, this
sampling process might appear to be non-uniform (and thus

difficult to implement in a fragment shader) since the expres-
sions used in computing the new texture depends on whether i
and j are odd or even. However, the bilinear interpolation can
be treated as a uniform operation by using the floor operation
in the fragment shader. If {I, J} is the integer part of {i/2,
j/2} and { , }α β is the fractional part, the {i, j}th entry of
L[gk] is exactly

, 1, , 1 1, 1(1)(1) (1) (1)k k k k

I J I J I J I Jg g g gα β α β α β α β+ + + +− − + − + − +

After applying the averaging mask A to L[gk], we crop the
resulting image on all sides by one pixel to create the subdi-
vided image gk+1 with dimensions [0..2m-2]2. The cropped
samples are no longer needed since border padding maintains
a constant size of one throughout subdivision.

While the expression for computing the unit normals nk may
appear complicated, both tangent masks refer to the same 8
neighbor samples, and both the cross product and normaliza-
tion require only a few instructions.

Having obtained limit points pk and normals nk, we re-cast
these off-screen buffers as a vertex stream. This ability to
interpret floating-point images as vertices is made possible by
a prototype RENDER_TO_VERTEX extension to OpenGL.
The alternative, reading the buffer back into host memory and
sending the vertices back to the graphics card, would be
prohibitively expensive. Finally, we feed the vertex stream
through the GPU to render the subdivided surface.

For efficiency, we pre-allocate image buffers of the appropri-
ate sizes to store {g1, g2, …, gk, pk, nk} where k is the desired
number of subdivision levels. Several models can share the
same set of subdivision buffers since these are only used to
store temporary information.

Continuous level-of-detail. To maintain real-time perform-
ance, the number of subdivision levels k can be adapted for
each model based on factors such as viewing distance, model
importance, and overall scene complexity [Funkhouser 1993].
Even though we send vertices to their limit positions, instan-
taneously changing the subdivision level creates visual
“pops.” Our solution is to smoothly transition between levels
using linear interpolation.

Given a continuous level of subdivision
k α+ with 0 1α< ≤ , we wish to
compute a mesh kp α+ that varies
continuously as a function of α be-
tween pk and pk+1. As a preliminary to
blending, we first triangulate pk and pk+1
such that all dotted diagonals of the
resulting triangulation are oriented as shown to the right.
(This choice of triangulation avoids the possibility of having
the diagonals of quads flip during subdivision.) Next, we
linearly subdivide the triangles of pk. Note that this subdivi-
sion yields a mesh with the same connectivity as pk+1 while
retaining the geometric shape of pk. Finally, we linearly
interpolate between these two meshes as a function of α . To
save texture memory, rather than computing pk=E[gk] as an
image, we instead gather the samples of pk by subsampling
pk+1. This also reduces the number of texture reads in the
linear interpolation step.

© The Eurographics Association 2003.

x x

x x

bd

c

a

Losasso et al. / Smooth Geometry Images

We employ a similar blending process to construct a set of
normals kn α+ for the mesh kp α+ . Given the normals nk for
pk, we first linearly subdivide these normals. To obtain
blended normals, we linearly interpolate between these
linearly subdivided normals and nk+1. In a purely diffuse
shading model, applying Gouraud shading to these linearly
subdivided normals over the linear subdivision of pk repro-
duces the same pixel intensities generated by Gouraud
shading pk using the normals nk. As a result, the diffuse
shading of the model exhibits no “popping” of intensity.

Unfortunately, specular vertex shading is nonlinear due to the
use of exponentiation in the shading model. To obtain
smooth transitions while performing specular shading, we
instead perform Phong shading and linearly interpolate unit
normals along edges of the mesh. Fortunately, the latest
graphics hardware supports performing the Phong calculation
in a fragment shader.

Subsampling images. When the rendered model generates
only a few pixels (such as when the model is distant), fewer
polygons are required to accurately render the model. In
particular, the mesh g0 may already have more polygons than
necessary. The simple grid structure of the geometry image
allows for convenient subsampling, which can be viewed as a
form of “negative” subdivision. If the unpadded geometry
image g0 has size (2k+1+1)2, repeated subsampling of the
interpolating mesh p0 yields a sequence of increasingly
simplified interpolating meshes p-1, p-2, …, that terminates in
a base octahedron p-k. Note that the use of subsampling
allows the previous level-of-detail blending to work for these
meshes without modification. Figure 5 shows an example of
this subsampling for the gargoyle. We can thus smoothly
transition between these approximations in real-time.

p -4 p -3 p -2 p -1 p 0 p 1

Figure 5: Subsampling of limit mesh for
“negative” subdivision.

Displacement mapping. Detail at level k can be added to the
smooth surface using a scalar displacement map dk. The
image dk typically has higher resolution than the control mesh
g0. Because it only requires one channel, and that one
channel can be quantized to fewer than 24 bits, it requires
much less space than storing detail in the geometry image
itself. With the geometry image representation, the pa-
rametrization of dk over g0 becomes implicit, thus removing
the need for texture coordinates. Applying a displacement
map dk in the fragment shader consists of computing pk + dk

nk . An example is shown in Figure 6.

g0 (33x33) p3 d3 (257x257) p3+d3 n3

Smooth limit surface Displaced surface

Figure 6: Scalar displacement mapping applied to
limit surface.

Implementation details. The precise breakdown of the
evaluation algorithm into fragment shading passes depends
on the capabilities of the GPU. On the currently available
ATI Radeon 9700 and 9800, we have separate shading passes
for linear subdivision, averaging, exact limit position, exact
limit normals, and the transitional blending based on subsam-
pling. If a larger number of texture reads were available in
future GPU’s, the full subdivision step (linear subdivision
plus averaging) could be performed in one operation, and
perhaps the limit operation could also be included.

6. Results

To gather performance statistics, we implemented two
separate programs that generate subdivided surfaces. The
first is an efficient CPU implementation of subdivision (not
using SSE or other SIMD instructions) running on a high-end
personal computer (Intel P4 2.5GHz). The second program is
a GPU implementation that subdivides the model using the
technique described in the paper. The GPU implementation
is tested on both the ATI Radeon 9700 and the ATI Radeon
9800. The Radeon 9800 runs at a higher clock speed, and has
slightly more bandwidth than the Radeon 9700, but is other-
wise identical for our purposes. Our GPU implementation
forces the graphics card to flush the rendering pipeline using
the OpenGL command glFinish() both before and after the
subdivision process. We record the elapsed time between the
two pipeline flushes, thus ensuring that the GPU is not
performing other tasks when the timing starts, and that the
GPU is done with the subdivision calculation when the timing
ends. Because glFinish() has a large overhead and the drivers
used in our implementation are preliminary, we expect better
performance in the future.

Since each new level of subdivision generates a model with
approximately four times as many vertices as the previous
level, one would expect subdivision times to scale similarly.
The CPU implementation behaves as expected. The GPU
implementation, however, has a non-trivial setup overhead
for the source and destination buffers, so it does not take four
times longer to subdivide to one more level. The actual
subdivision computation dominates the setup overhead only
for large geometry images or with many subdivision levels.

© The Eurographics Association 2003.

Losasso et al. / Smooth Geometry Images

Performance analysis of the GPU-based implementation is
difficult due to the fact that the inner workings of the graphics
card are not published. Using the information available to us,
we estimate the utilization rates of GPU bandwidth and
computation (see Table 2), and conclude that our method is
currently compute-limited rather than bandwidth-limited.
This conclusion is supported by three observations:

• The estimated consumed bandwidth is less than 15% of
the theoretical maximum bandwidth available.

• The estimated number of fragment shader cycles used
for subdivision coincides with the maximum possible, given
the GPU clock speeds and number of shader units.

• The increase of 17% in clock speed and 10% in band-
width between the two cards yields an increase of almost
15% in performance for our application.

We want to stress that these resource utilization numbers (for
both bandwidth and computation) should be treated as very
rough estimates. Indeed, bandwidth utilization is complicated
by factors such as unknown caching schemes and bandwidth
use by other buffers or by other GPU tasks. Similarly,
computation utilization is complicated by issues such as
unknown optimizations to the fragment programs by the
graphics driver and unknown cycle counts for individual
instructions.

Overall, the GPU implementation is up to one order of
magnitude faster than our CPU implementation (Table 2).

As another CPU comparison number, Bolz and Schröder
[2002] report a rate of almost 20 million triangles per second
on a Pentium 4 when subdividing a 384-quad mesh to 6
levels. They exploit SIMD instructions and maximize
memory cache coherency. It is important to note that their
method only calculates the tangents to the surface, and not the
actual surface normal as in our implementation. Computing
the surface normal requires an additional vector cross-product
and normalization, which incur a significant cost on the CPU.

Rendering is currently implemented using triangle strips that
index into the computed vertex array. The current API
requires us to send these indices every frame, even though
they are constant. The indices follow a simple grid pattern, so
they could easily be computed automatically in future GPU’s.

7. Summary and future work

In summary, we have developed a scheme for modeling a
closed genus-zero surface as single bicubic surface patch.
This patch is C2 everywhere except for four extraordinary
vertices where the patch is C1. We have demonstrated a
simple approach to subdividing this surface patch that in-
cludes smooth level-of-detail transitions and displacement
mapping. By representing the patch as a geometry image, we
are able to realize all these computations using the GPU
fragment shader pipeline.

 Subdivision Level (k)

 1 2 3 4

Time (ms) 1.03 1.38 3.23 10.4

Triangle rate (M∆/s) 7.2 21.2 36.0 44.6

Bandwidth utiliz. (%) 2.2 6.2 10.5 13.1

G
P

U
 (R

 9
70

0)

Computation utiliz. (%) 14.3 46.7 81.1 101

Time (ms) 0.93 1.30 2.91 9.06

Triangle rate (M∆/s) 8.0 22.5 40.0 51.1

Bandwidth utiliz. (%) 2.1 6.0 10.6 13.6

G
P

U
 (R

 9
80

0)

Computation utiliz. (%) 13.6 42.4 77.0 99.0

Time (ms) 1.3 5.5 22.8 90.7

C
P

U

Triangle rate (M∆/s) 5.9 5.3 5.1 5.1

Table 2: Timing results for subdividing a geometry
image of size 31x31, including computation of limit
positions and normals.

Our method takes advantage of the widening gap between the
processing powers of the GPU and CPU. In the future, we
believe that other computations such as more sophisticated
rendering techniques or computational simulations may profit
from being computed on the GPU. The regular structure of
geometry images will be a key to performing these computa-
tions on the GPU.

In terms of modeling and rendering smooth surfaces, future
work will involve handling more general types of surface
models such as those with handles and boundaries. Unfold-
ing these surfaces involves cut curves with more complicated
topologies that lead to extraordinary vertices of arbitrary
valence on the boundary of the geometry image. Introducing
creases into the interior of the geometry image is also an area
of future work. Crease curves and corners would allow a
larger class of models to be represented with geometry
images.

Currently, parametrization misalignment in areas of high
curvature sometimes gives rise to surface rippling. This may
be overcome in the future by optimizing the parametrization.

We have shown how to perform some basic geometry
manipulation in graphics hardware, but in the future one can
envision using the hardware for many other types of geomet-
ric algorithms.

© The Eurographics Association 2003.

Losasso et al. / Smooth Geometry Images

size 33x33

size 65x65

size 65x65

size 5x5 size 9x9

control mesh g0 subdivided surface p3

Figure 7: Additional examples of subdivided surfaces.

References

BISCHOFF, S., KOBBELT, L. P., AND SEIDEL, H.-P. 2000. Towards
Hardware Implementation of Loop Subdivision. SIGGRAPH / Euro-
graphics Workshop on Graphics Hardware, pp. 41–50.

BOLZ, J. AND SCHRÖDER, P. 2002. Rapid Evaluation of Catmull-Clark
Subdivision Surfaces. Web3D 2002 Symposium.

CATMULL, E., AND CLARK, J. 1978. Recursively Generated B-spline
Surfaces on Arbitrary Topological Meshes. Computer-Aided Design,
10(6), pp. 350–355.

DEROSE, T., KASS, M., AND TRUONG, T. 1998. Subdivision Surfaces in
Character Animation. SIGGRAPH 1998, pp. 85-94.

FORSEY, D. AND BARTELS. R. 1988. Hierarchical B-spline Refinement.
SIGGRAPH 1988, pp. 205-212

FUNKHOUSER, T., AND SEQUIN, C. 1993. Adaptive Display Algorithm for
Interactive Frame Rates during Visualization of Complex Virtual
Environments, SIGGRAPH 1993, pp.247-254.

GU, X., GORTLER, S., AND HOPPE, H. 2002. Geometry Images. SIG-
GRAPH 2002, pp. 355-361.

HALSTEAD, M., KASS, M., AND DEROSE, T. 1993. Efficient, Fair
Interpolation using Catmull-Clark Surfaces. SIGGRAPH 1993, pp.
35-44.

LANE, J. AND RIESENFELD, R. A Theoretical Development for the
Computer Generation and Display of Piecewise Polynomial Func-
tions. Transactions on Pattern Analysis and Machine Intelligence.
2(1), pp. 35-46.

LINDHOLM, E., KILGARD, M., AND MORETON, H. 2001. A User-
Programmable Vertex Engine. SIGGRAPH 2001, pp. 149-158.

LOOP, C. 1994. A G2 Triangular Spline Surface of Arbitrary Topological
Type. Computer-Aided Geometric Design, 11(3), pp. 303-330.

MITCHELL, J., 2002. Image Processing with Direct3D Pixel Shaders. In
Vertex and Pixel Shaders Tips and Tricks, Wolfgang Engel editor,
Wordware.

PETERS, J. 2000. Patching Catmull-Clark Meshes. SIGGRAPH 2000, pp.
255-258.

PETERS, J. AND UMLAUF, G. 2001. Computing Curvature Bounds for
Bounded Curvature Subdivision. Computer-Aided Geometric De-
sign, 18, pp. 455-461.

PRAUN, E. AND HOPPE, H. 2003. Spherical Parametrization and Remesh-
ing. SIGGRAPH 2003.

PULLI, K., AND SEGAL, M. 1996. Fast Rendering of Subdivision
Surfaces. Eurographics Rendering Workshop 1996, pp. 61-70.

PURCELL, T., BUCK, I., MARK, W., AND HANRAHAN, P. 2002. Ray
Tracing on Programmable Graphics Hardware. ACM Transactions
on Graphics, 21(3), pp. 703-712.

REIF, U. 1995. A Unified Approach to Subdivision Algorithms near
Extraordinary Points. Computer-Aided Geometric Design, 12, pp.
153-174.

VLACHOS, A., PETERS, J., BOYD. C., AND MITCHELL, J. 2001. Curved PN
Triangles. ACM Symposium on Interactive 3D Graphics, pp. 159-
166.

WARREN, J., AND WEIMER, H. 2001. Subdivision Schemes for Geometric
Design, Morgan Kaufmann.

© The Eurographics Association 2003.

Losasso et al. / Smooth Geometry Images

Appendix: Smoothness at vertices a, b, c, d

Our task is to show that applying bicubic subdivision to the
perturbed geometry image yields a smooth (C1) surface at the
cut vertices a, b, c, d. We first analyze the smoothness of the
unperturbed scheme at the cut vertex a. Following Equation
1, the bicubic subdivision process for the one-ring of the cut
vertex a has the form (with 2

mh =)
1

,1 ,1
1
1,1 1,1
1 1

,2 ,232
1
1,2 1,2
1
1,2 1,2

18 6 6 1 1
12 12 4 2 2
12 4 12 2 2
8 8 8 8 0
8 8 8 0 8

k k
m h

k k
m h
k k
m h

k k
m h
k k
m h

g g
g g
g g

g g
g g

+

+
− −
+

+
− −
+
+ +

 =

.

This subdivision matrix S has eigenvalues 1, 1
4 , 1

4 , 1
4 , 1

16 .
Unfortunately, the unperturbed scheme is only C0 due to the
fact that the subdominant eigenvalue 1

4 has multiplicity
three (as opposed to multiplicity two in smooth schemes).
Technically, the three eigenfunctions associated with the
eigenvalues 1

4 provide three independent tangent directions
at a and allow a cusp in the resulting limit surface (see
Chapter 8 of [Warren and Weimer 2001] for details.)

However, note that one of the right eigenvectors of S corre-
sponding to 1

4 is exactly (-4,1,1,1,1). If we perturb gh,1 as
done in Equation 2,

()1
,1 1,1 ,2 1,2 1,24

k k k k k
h h h h hg g g g g− − += + + + ,

the effect on the subdivision process is to suppress the
contribution of the eigenfunction corresponding to this
eigenvector in the limit surface at a. More concretely, the
subdivided control points again satisfy the same centroid
relation

()1 1 1 1 11
,1 1,1 ,2 1,2 1,24

k k k k k
m m m m mg g g g g+ + + + +

− − += + + + .

Since the control point k
hg is dependent in this new scheme,

we can derive a new subdivision matrix of size four involving
the remaining four independent control points of the form

1
1,1 1,1
1

1,2 ,2
1 32
1,2 1,2
1
1,2 1,2

15 7 5 5
7 15 5 5

10 10 10 2
10 10 2 10

k k
m h
k k
m h

k k
m h
k k
m h

g g
g g

g g
g g

+
− −
+

+
− −
+
+ +

 =

.

The subdivision matrix for this perturbed scheme has a
spectrum of the form 1, 1

4 , 1
4 , 1

16 . To determine the
smoothness of this subdivision scheme, we must extend the
subdivision matrix to the two-ring of a due to the support of
the B-spline basis functions. The resulting extension pro-
duces eigenvalues of magnitude less than or equal to 1

8 .
Therefore, the two subdominant eigenfunctions correspond-
ing to 1

4 define two tangent directions and the perturbed
scheme now has a well-defined tangent plane at a. To
complete the proof of smoothness, we use the techniques of
[Reif 95] to show that the characteristic map for this scheme
is regular and injective (Figure 8), and thus the scheme is C1
at a.

Finally, as shown in [Peters and Umlauf 2001], subdivision
schemes with the spectrum 1, , ,...α α α 2, have bounded
curvature at the extraordinary vertex. Unfortunately, extend-
ing the subdivision process to the two-ring of a introduces
several new eigenvalues of size 1

8 to the spectrum of the
extended subdivision matrix. Thus, the subdivision scheme
while smooth has unbounded curvature at a.

Figure 8: The characteristic map at an extraordinary

vertex of valence two.

© The Eurographics Association 2003.

