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Poisson surface reconstruction creates watertight surfaces from oriented
point sets. In this work we extend the technique to explicitly incorporate
the points as interpolation constraints. The extension can be interpreted as
a generalization of the underlying mathematical framework to a screened
Poisson equation. In contrast to other image and geometry processing tech-
niques, the screening term is defined over a sparse set of points rather than
over the full domain. We show that these sparse constraints can nonethe-
less be integrated efficiently. Because the modified linear system retains
the same finite-element discretization, the sparsity structure is unchanged,
and the system can still be solved using a multigrid approach. Moreover
we present several algorithmic improvements that together reduce the time
complexity of the solver to linear in the number of points, thereby enabling
faster, higher-quality surface reconstructions.
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1. INTRODUCTION

Poisson surface reconstruction [Kazhdan et al. 2006] is a well-
known technique for creating watertight surfaces from oriented
point samples acquired with 3D range scanners. The technique
is resilient to noisy data and misregistration artifacts. However, as
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noted by several researchers, it suffers a tendency to oversmooth
the data [Alliez et al. 2007; Manson et al. 2008; Calakli and Taubin
2011; Berger et al. 2011; Digne et al. 2011b].

In this work, we explore modifying the Poisson reconstruction
algorithm to incorporate positional constraints. This modification
is inspired by the recent reconstruction technique of Calakli and
Taubin [2011]. It also relates to recent work in image and geom-
etry processing [Nehab et al. 2005; Bhat et al. 2008; Chuang and
Kazhdan 2011], in which a data fidelity term is used to “screen” the
associated Poisson equation. In our surface reconstruction context,
this screening term corresponds to a soft constraint that encourages
the reconstructed isosurface to pass through the input points.

The approach we propose differs from the traditional screened
Poisson formulation in that the position and gradient constraints
are defined over different domain types. Whereas gradients are con-
strained over the full 3D space, positional constraints are introduced
only over the input points, which lie near a 2D manifold. We show
how these two types of constraints can be efficiently integrated, so
that we can leverage the original multigrid structure to solve the
linear system without incurring a significant overhead in space or
time.

To demonstrate the benefits of screening, Figure 1 compares
results of the traditional Poisson surface reconstruction and the
screened Poisson formulation on a subset of 11.4M points from the
scan of Michelangelo’s David [Levoy et al. 2000]. Both reconstruc-
tions are computed over a spatial octree of depth 10, corresponding
to an effective voxel resolution of 10243. Screening generates a
model that better captures the input data (as visualized by the sur-
face cross-sections overlaid with the projection of nearby samples),
even though both reconstructions have similar complexity (6.8M
and 6.9M triangles, respectively) and require similar processing
time (230 and 272 seconds, respectively, without parallelization).1

Another contribution of our work is to modify both the octree
structure and the multigrid implementation to reduce the time com-
plexity of solving the Poisson system from log-linear to linear in
the number of input points. Moreover we show that hierarchical
point clustering enables screened Poisson reconstruction to attain
this same linear complexity.

2. RELATED WORK

Reconstructing surfaces from scanned points is an important and
extensively studied problem in computer graphics. The numerous
approaches can be broadly categorized as follows.

Combinatorial Algorithms. Many schemes form a triangula-
tion using a subset of the input points [Cazals and Giesen 2006].

1The performance of the unscreened solver is measured using our imple-
mentation with screening weight set to zero. The implementation of the
original Poisson reconstruction runs in 412 seconds.
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Fig. 1. Reconstruction of the David head‡, comparing traditional Poisson surface reconstruction (left) and screened Poisson surface reconstruction which
incorporates point constraints (center). The rightmost diagram plots pixel depth (z) values along the colored segments together with the positions of nearby
samples. The introduction of point constraints significantly improves fit accuracy, sharpening the reconstruction without amplifying noise.

Space is often discretized using a tetrahedralization or a voxel grid,
and the resulting elements are partitioned into inside and outside
regions using an analysis of cells [Amenta et al. 2001; Boissonnat
and Oudot 2005; Podolak and Rusinkiewicz 2005], eigenvector
computation [Kolluri et al. 2004], or graph cut [Labatut et al. 2009;
Hornung and Kobbelt 2006].

Implicit Functions. In the presence of sampling noise, a com-
mon approach is to fit the points using the zero set of an implicit
function, such as a sum of radial bases [Carr et al. 2001] or piece-
wise polynomial functions [Ohtake et al. 2005; Nagai et al. 2009].
Many techniques estimate a signed-distance function [Hoppe et al.
1992; Bajaj et al. 1995; Curless and Levoy 1996]. If the input points
are unoriented, an important step is to correctly infer the sign of the
resulting distance field [Mullen et al. 2010].

Our work extends the Poisson surface reconstruction scheme of
Kazhdan et al. [2006], in which the implicit function corresponds to
the model’s indicator function χ . The function χ is often defined to
have value 1 inside and value 0 outside the model. To simplify the
derivations, in this article we define χ to be 1

2 inside and −1
2 outside,

so that its zero isosurface passes near the points. The function χ is
solved using a Laplacian system discretized over a multiresolution
B-spline basis, as reviewed in Section 3.

Alliez et al. [2007] form a Laplacian system over a tetrahedral-
ization, and constrain the solution’s biharmonic energy; the desired
function is obtained as the solution to an eigenvector problem. Man-
son et al. [2008] represent the indicator function χ using a wavelet
basis, and efficiently compute the basis coefficients using simple
local sums over an adapted octree.

Calakli and Taubin [2011] optimize a signed-distance function to
have value zero at the points, have derivatives that agree with the
point normals, and minimize a Hessian smoothness norm. The re-
sulting optimization involves a bilaplacian operator, which requires
estimating derivatives of higher order than in the Laplacian. The
reconstructed surfaces are shown to have good accuracy, strongly
suggesting the importance of explicitly fitting the points within the
optimization. This motivated us to explore whether a Laplacian sys-
tem could be extended in this respect, and also be compatible with
a multigrid solver.

Screened Poisson Surface Fitting. The method of Nehab et al.
[2005], which simultaneously fits position and normal constraints,
may also be viewed as the solution of a screened Poisson equation.
The fitting algorithm assumes that a 2D parametric domain (i.e.,

a plane or triangle mesh) is already established. The position and
derivative constraints are both defined over this 2D domain.

In contrast, in Poisson surface reconstruction the 2D domain
manifold is initially unknown, and therefore the goal is to infer an
indicator function χ rather than a parametric function. This leads
to a hybrid problem with derivative (Laplacian) constraints defined
densely over 3D and position constraints defined sparsely on the set
of points sampled near the unknown 2D manifold.

3. REVIEW OF POISSON SURFACE
RECONSTRUCTION

The approach of Poisson surface reconstruction is based on the
observation that the (inward pointing) normal field of the boundary
of a solid can be interpreted as the gradient of the solid’s indicator
function. Thus, given a set of oriented points sampling the boundary,
a watertight mesh can be obtained by: (1) transforming the oriented
point samples into a continuous vector field in 3D, (2) finding a
scalar function whose gradients best match the vector field, and
(3) extracting the appropriate isosurface.

Because our work focuses primarily on the second step, we review
it here in more detail.

Scalar Function Fitting. Given a vector field �V : R
3 → R

3,
the goal is to solve for the scalar function χ : R

3 → R minimizing

E(χ ) =
∫

‖∇χ (p) − �V (p)‖2dp. (1)

Using the Euler-Lagrange formulation, the minimum is obtained by
solving the Poisson equation

�χ = ∇ · �V .

System Discretization. The Galerkin formulation is used to
transform this into a finite-dimensional system [Fletcher 1984].
First, a basis {B1, . . . , BN } : R

3 → R is chosen, namely a collection
of trivariate (usually triquadratic) B-spline functions. With respect
to this basis, the discretization becomes

〈�χ,Bi〉[0,1]3 = 〈∇ · �V , Bi〉[0,1]3 1 ≤ i ≤ N,

ACM Transactions on Graphics, Vol. 32, No. 3, Article 29, Publication date: June 2013.



Screened Poisson Surface Reconstruction • 29:3

where 〈·, ·〉[0,1]3 is the standard inner product on the space of (scalar-
and vector-valued) functions defined on the unit cube:

〈F,G〉[0,1]3 =
∫

[0,1]3
F (p) · G(p) dp,

〈 �U, �V 〉[0,1]3 =
∫

[0,1]3
〈 �U (p), �V (p)〉 dp.

Since the solution is itself expressed in terms of the basis functions,

χ (p) =
N∑

i=1

xiBi(p),

finding the coefficients {xi} of the solution reduces to solving the
linear system Ax = b where

Aij = 〈∇Bi, ∇Bj 〉[0,1]3 and bi = 〈 �V , ∇Bi〉[0,1]3 . (2)

The basis functions {B1, . . . , BN } are chosen to be compactly sup-
ported, so most pairs of functions do not have overlapping support,
and thus the matrix A is sparse.

Because the solution is expected to be smooth away from the
input samples, the linear system is discretized by first adapting an
octree to the input samples and then associating an (appropriately
scaled and translated) trivariate B-spline function to each octree
node. This provides high-resolution detail in the vicinity of the
surface while reducing the overall dimensionality of the system.

System Solution. Given the hierarchy defined by an octree of
depth D, a multigrid approach is used to solve the linear system.
The basis functions are partitioned according to the depths of their
associated nodes and, for each depth d , a linear system Adxd = bd

is defined using the corresponding B-splines {Bd
1 , . . . , Bd

Nd
}, such

that χ (p) = ∑D

d=0

∑
i x

d
i Bd

i (p).
Because the octree-selected B-spline functions do not form a

complete grid at each depth, it is generally not possible to prolong
the solution xd at depth d into the solution xd+1 at depth d +1. (The
B-spline associated with a given node is a sum of B-spline functions
associated not only with its own child nodes, but also with child
nodes of its neighbors.) Instead, the constraints at depth d + 1 are
adjusted to account for the part of the solution already realized at
coarser depths.

Pseudocode for a cascadic solver, where the solution is only
relaxed on the up-stroke of the V-cycle, is given in Algorithm 1.

ALGORITHM 1: Cascadic Poisson Solver

1 For d ∈ {0, . . . , D} Iterate from coarse to fine

2 For d ′ ∈ {0, . . . , d − 1} Remove the constraints
3 bd = bd − Add ′

xd ′
met at coarser depths

4 Relax Adxd = bd Adjust the solution at depth d

Here, Add ′
is the Nd × Nd ′ matrix used to transform solution

coefficients at depth d ′ into constraints at depth d:

Add ′
ij = 〈∇Bd

i , ∇Bd ′
j

〉
[0,1]3 .

Note that, by definition, Ad = Add .

Isosurface Extraction. Solving the Poisson equation, one ob-
tains a function χ that approximates the indicator function. Ideally,
the function’s zero level-set should therefore correspond to the de-
sired surface. In practice however, the function χ can differ from
the true indicator function due to several sources of error.

—The point sampling may be noisy, possibly containing outliers.
—The Galerkin discretization is only an approximation of the con-

tinuous problem.
—The point sampling density is approximated during octree con-

struction.

To mitigate these errors, Kazhdan et al. [2006] adjust the implicit
function globally by subtracting the average value of the function
at the input samples.

4. INCORPORATING POINT CONSTRAINTS

The original Poisson surface reconstruction algorithm adjusts the
implicit function using a single global offset such that its aver-
age value over all points is zero. However, the presence of errors
can cause the implicit function to drift so that no global offset is
satisfactory. Instead, we seek to explicitly interpolate the points.

Given the set of input points P with weights w : P → R
≥0, we

add to the energy of Eq. (1) a term that penalizes the function’s
deviation from zero at the samples,

E(χ )=
∫

‖ �V (p)−∇χ (p)‖2dp + α · Area(P)∑
p∈P w(p)

∑
p∈P

w(p)χ 2(p), (3)

where α is a weight that trades off the importance of fitting the
gradients and fitting the values, and Area(P) is the area of the
reconstructed surface, estimated by computing the local sampling
density as in the work of Kazhdan et al. [2006]. In our implemen-
tation, we set the per-sample weights w(p) = 1, although one can
also use confidence values if these are available.

The energy can be expressed concisely as

E(χ ) = 〈 �V − ∇χ, �V − ∇χ〉[0,1]3 + α〈χ, χ〉(w,P), (4)

where 〈·, ·〉(w,P) is the bilinear, symmetric, positive, semidefinite
form on the space of functions in the unit-cube, obtained by taking
the weighted sum of function values:

〈F,G〉(w,P) = Area(P)∑
p∈P w(p)

∑
p∈P

w(p) · F (p) · G(p).

4.1 Interpretation as a Screened Poisson Equation

The energy in Eq. (4) combines a gradient constraint integrated over
the spatial domain with a value constraint summed at discrete points.
As shown in the appendix, its minimization can be interpreted as a
screened Poisson equation (�−αĨ )χ = ∇· �V with an appropriately
defined operator Ĩ .

4.2 Discretization

We apply a discretization similar to that in Section 3 to the mini-
mization of the energy in Eq. (4). The coefficients of the solution χ
with respect to the basis {B1, . . . , BN } are again obtained by solv-
ing a linear system of the form Ax = b. The right-hand side b is
unchanged because the constrained value at the sample points is
zero. Matrix A now includes the point constraints:

Aij = 〈∇Bi, ∇Bj 〉[0,1]3 + α〈Bi, Bj 〉(w,P). (5)
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Fig. 2. Visualizations of the reconstructed implicit function along a planar
slice through the cow model‡ (shown on the left), for the original Pois-
son solver, and for the screened Poisson solver without and with scale-
independent screening.

Note that incorporating the point constraints does not change the
sparsity of matrix A because Bi(p) · Bj (p) is nonzero only if the
supports of the two functions overlap, in which case the Poisson
equation has already introduced a nonzero entry in the matrix.

As in Section 3, we solve this linear system using a cascadic
multigrid algorithm, iterating over the octree depths from coarsest
to finest, adjusting the constraints, and relaxing the system. Similar
to Eq. (5), the matrix used to transform a solution at depth d ′ to a
constraint at depth d is expressed as

Add ′
ij = 〈∇Bd

i , ∇Bd ′
j

〉
[0,1]3 + α

〈
Bd

i , Bd ′
j

〉
(w,P)

.

This operator adjusts the constraint bd (line 3 of Algorithm 1) not
only by removing the Poisson constraints met at coarser resolutions,
but also by modifying the constrained values at points where the
coarser solution does not evaluate to zero.

4.3 Scale-Independent Screening

To balance the two energy terms in Eq. (3), it is desirable to adjust
the screening parameter α such that: (1) the reconstructed surface
shape is invariant under scaling of the input points with respect
to the solver domain, and (2) the prolongation of a solution at a
coarse depth is an accurate estimate of the solution at a finer depth
in the cascadic multigrid approach. We achieve both these goals by
adjusting the relative weighting of position and gradient constraints
across the different octree depths. Noting that the magnitude of the
gradient constraint scales with resolution, we double the weight of
the interpolation constraint with each depth:

Add ′
ij = 〈∇Bd

i ,∇Bd ′
j

〉
[0,1]3 + 2dα

〈
Bd

i , Bd ′
j

〉
(w,P)

.

The adaptive weight of 2d is chosen to keep the Laplacian and
screening constraints around the surface in balance. To see this,
assume that the points are locally planar, and consider the row of
the system matrix corresponding to an octree node overlapping the
points. The coefficients of the system in that row are the sum of
Laplacian and screening terms. If we consider the rows correspond-
ing to the child nodes that overlap the surface, we find that the
contribution from the Laplacian constraints scales by a factor of 1/2
while the contribution from the screening term scales by a factor of
1/4.2 Thus, scaling the screening weights by a factor of two with
each resolution keeps the two terms in balance.

Figure 2 shows the benefit of scale-independent screening in re-
constructing the cow model. The leftmost image shows a plane
passing through the bounding cube of the cow, and the images to

2For the Laplacian term, the Laplacian scales by a factor of 4 with refinement,
and volumetric integrals scale by a factor of 1/8. For the screening term,
area integrals scale by a factor of 1/4.

the right show the values of the computed indicator function along
that plane, for different implementations of the solver. As the figure
shows, the unscreened Poisson solver provides a good approxima-
tion of the indicator functions, with values inside (respectively, out-
side) the surface approximately 1/2 (respectively, -1/2). However,
applying the same solver to the screened Poisson equation (second
from right) provides a solution that is only correct near the input
samples and returns to zero near the faces of the bounding cube, po-
tentially resulting in spurious surface sheets away from the surface.
It is only with scale-independent screening (right) that we obtain a
high-quality solution to the screened Poisson equation.

Scale Independence. Using this resolution-adaptive weight-
ing, our system has the property that the reconstruction obtained by
solving at depth D is identical to the reconstruction that would be
obtained by scaling the point set by 1/2 and solving at depth D +1.

To see this, we consider the two energies that guide the recon-
struction, E �V (χ ) measuring the extent to which the gradients of the
solution match the prescribed vector field, and E(w,P)(χ ) measuring
the extent to which the solution meets the screening constraint:

E �V (χ ) =
∫ ∥∥∥ �V (p) − ∇χ (p)

∥∥∥2
dp

E(w,P)(χ ) = Area(P)∑
p∈P w(p)

∑
p∈P

w(p)χ 2(p).

Scaling by 1/2, we obtain a new point set (w̃, P̃) with positions
scaled by 1/2, unchanged weights, w̃(p) = w(2p), and scaled area,
Area(P̃) = Area(P)/4; a new scalar field, χ̃ (p) = χ (2p); and a

new vector field, �̃V (p) = 2 �V (2p). Computing the corresponding
energies, we get

E �̃V (χ̃) = 1

2
E �V (χ ) and E(w̃,P̃)(χ̃) = 1

4
E(w,P)(χ ).

Thus, scaling the screening weight by a factor of two with each
successive depth ensures that the sum of energies is unchanged (up
to multiplication by a constant) so the minimizer remains the same.

4.4 Boundary Conditions

In order to define the linear system, it is necessary to define the
behavior of the function space along the boundary of the integration
domain. In the original Poisson reconstruction the authors imposed
Dirichlet boundary conditions, forcing the implicit function to have
a value of −1

2 along the boundary. In the present work we extend the
implementation to support Neumann boundary conditions as well,
forcing the normal derivative to be zero along the boundary.

In principle these two boundary conditions are equivalent for
watertight surfaces, since the indicator function has a constant neg-
ative value outside the model. However, in the presence of missing
data we find Neumann constraints to be less restrictive because they
only require that the implicit function have zero derivative across the
boundary of the integration domain, a property that is compatible
with the gradient constraint since the guiding vector field �V is set to
zero away from the samples. (Note that when the surface does cross
the boundary of the domain, the Neumann boundary constraints
create a bias to crossing the domain boundary orthogonally.)

Figure 3 shows the practical implications of this choice when
reconstructing the Angel model, which was only scanned from the
front. The left image shows the original point set and the recon-
structions using Dirichlet and Neumann boundary conditions are
shown to the right. As the figure shows, imposing Dirichlet con-
straints creates a watertight surface that closes off before reaching
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Fig. 3. Reconstructions of the Angel point set‡ (left) using Dirichlet (cen-
ter) and Neumann (right) boundary conditions.

the boundary while using Neumann constraints allows the surface
to extend out to the boundary of the domain.

Similar results can be seen at the bases of the models in Figures 1
and 4(a), with the original Poisson reconstructions obtained using
Dirichlet constraints and the screened reconstructions obtained us-
ing Neumann constraints.

5. IMPROVED ALGORITHMIC COMPLEXITY

In this section we discuss the efficiency of our reconstruction al-
gorithm. We begin by analyzing the complexity of the algorithm
described previously. Then, we present two algorithmic improve-
ments. The first describes how hierarchical clustering can be used
to reduce the screening overhead at coarser resolutions. The second
applies to both the unscreened and screened solver implementa-
tions, showing that the asymptotic time complexity in both cases
can be reduced to be linear in the number of input points.

5.1 Efficiency of Basic Solver

Let us begin by analyzing the computational complexity of the
unscreened and screened solvers. We assume that the points P are
evenly distributed over a surface, so that the depth of the adapted
octree is D = O(log |P|) and the number of octree nodes at depth d
is O(4d ).

We also note that the number of nonzero entries in matrix Add ′

is O(4d ), since the matrix has O(4d ) rows and each row has at
most 53 nonzero entries. (Since we use second-order B-splines,
basis functions are supported within their one-ring neighborhoods
and the support of two functions will overlap only if one is within
the two-ring neighborhood of the other.)

Assuming that the matrices Add ′
have already been computed,

the computational complexity for the different steps in Algorithm 1
is as follows.

Step 3. This is O(4d ) – since Add ′
has O(4d ) nonzero entries.

Step 4. This is O(4d ) – since Ad has O(4d ) nonzero entries and
the number of relaxation steps performed is constant.

Steps 2–3.
∑d−1

d ′=0 O(4d ) = O(4d · d).

Steps 2–4. O(4d · d + 4d ) = O(4d · d).

Steps 1–4.
∑D

d=0 O(4d · d) = O(4D · D) = O(|P| · log |P|).
There still remains the computation of matrices Add ′

.
For the unscreened solver, the complexity of computing Add ′

is O(4d ), since each entry can be computed in constant time. Thus,
the overall time complexity remains O(|P| · log |P|).

For the screened solver, the complexity of computing Add ′

is O(|P|) since defining the coefficients requires accumulating the

screening contribution from each of the points, and each point con-
tributes to a constant number of rows. Thus, the overall time com-
plexity is dominated by the cost of evaluating the coefficients of Add ′

which is

D∑
d=0

d−1∑
d ′=0

O(|P|) = O(|P| · D2) = O(|P| · log2 |P|).

5.2 Hierarchical Clustering of Point Constraints

Our first modification is based on the observation that since the basis
functions at coarser resolutions are smooth, it is unnecessary to con-
strain them at the precise sample locations. Instead, we cluster the
weighted points as in the work of Rusinkiewicz and Levoy [2000].
Specifically, for each depth d , we define (wd,Pd ) where pi ∈ Pd is
the weighted average position of the points falling into octree node
i at depth d , and wd (pi) is the sum of the associated weights.3 If
all input points have weight w(p) = 1, then wd (pi) is simply the
number of points falling into node i.

This alters the computation of the system matrix coefficients:

Add ′
ij = 〈∇Bd

i , ∇Bd ′
j

〉
[0,1]3 + 2dα

〈
Bd

i , Bd ′
j

〉
(wd ,Pd )

.

Note that since d > d ′, the value 〈Bd
i , Bd ′

j 〉(wd ,Pd ) is obtained by
summing over points stored with the finer resolution.

In particular, the complexity of computing Add ′
for the screened

solver becomes O(|Pd |) = O(4d ), which is the same as that of the
unscreened solver, and both implementations now have an overall
time complexity of O(|P| · log |P|).

On typical examples, hierarchical clustering reduces execution
time by a factor of almost two, and the reconstructed surface is
visually indistinguishable.

5.3 Conforming Octrees

To account for the adaptivity of the octree, Algorithm 1 subtracts
off the constraints met at all coarser resolutions before relaxing
at a given depth (steps 2–3), resulting in an algorithm with log-
linear time complexity. We obtain an implementation with linear
complexity by forcing the octree to be conforming. Specifically, we
define two octree cells to be mutually visible if the supports of their
associated B-splines overlap, and we require that if a cell at depth d
is in the octree, then all visible cells at depth d−1 must also be in the
tree. Making the tree conforming requires the addition of new nodes
at coarser depths, but this still results in O(4d ) nodes at depth d .

While the conforming octree does not satisfy the condition that a
coarser solution can be prolonged into a finer one, it has the property
that the solution obtained at depths {0, . . . , d −1} that is visible to a
node at depth d can be expressed entirely in terms of the coefficients
at depth d − 1. Using an accumulation vector to store the visible
part of the solution, we obtain the linear-time implementation in
Algorithm 2.

In the algorithm, P d
d−1 is the B-spline prolongation operator, ex-

pressing a solution at depth d − 1 in terms of coefficients at depth
d . The number of nonzero entries in P d

d−1 is O(4d ), since each col-
umn has at most 43 nonzero entries, so steps 2–5 of Algorithm 2 all
have complexity O(4d ). Thus, the overall complexity of both the
unscreened and screened solvers becomes O(|P|).

3Note that the weight wd (p) is unrelated to the screening weight 2d intro-
duced in Section 4.3 for scale-independent screening.
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Fig. 4. Experiments of reconstruction from real scanner data.

ALGORITHM 2: Conforming Cascadic Poisson Solver

1 For d ∈ {0, . . . , D} Iterate from coarse to fine.

2 x̂d−1 = P d−1
d−2 x̂d−2 Upsample coarser

accumulation vector.

3 x̂d−1 = x̂d−1 + xd−1 Add in coarser solution.

4 bd = bd − Ad d−1x̂d−1 Remove constraints
met at coarser depths.

5 Relax Adxd = bd Adjust the solution at depth d .

5.4 Implementation Details

The algorithm is implemented in C++, using OpenMP for mul-
tithreaded parallelization. We use a conjugate-gradient solver to
relax the system at each multigrid level. With the exception of the
octree construction, most of the operations involved in the Poisson

reconstruction can be categorized as operations that either “accumu-
late” or “distribute” information [Bolitho et al. 2007, 2009]. The for-
mer do not introduce write-on-write conflicts and are trivial to paral-
lelize. The latter only involve linear operations, and are parallelized
using a standard map-reduce approach: in the map phase we create
a duplicate copy of the data for each thread to distribute values into,
and in the reduce phase we merge the copies by taking their sum.

6. RESULTS

We evaluate the algorithm (Screened) by comparing its accuracy
and computational efficiency with several prior methods: the orig-
inal Poisson reconstruction of Kazhdan et al. [2006] (Poisson), the
wavelet reconstruction of Manson et al. [2008] (Wavelet), and the
smooth signed distance reconstruction of Calakli and Taubin [2011]
(SSD).

For the new algorithm, we set the screening weight to α = 4 and
use Neumann boundary conditions in all experiments. (Numerical
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Fig. 5. Experiments of reconstruction from clean, uniformly sampled data.

results obtained using Dirichlet boundaries were indistinguishable.)
For the prior methods, we set algorithmic parameters to values rec-
ommended by the authors, using Haar wavelets in the Wavelet recon-
struction and setting the value/normal/Hessian weights to 1/1/0.25
in the SSD reconstruction. For Poisson, SSD, and Screened we set the
“samples-per-node” parameter to 1 and the “bounding-box-scale”
parameter to 1.1. (For Wavelet the bounding box scale is hard-coded
at 1 and there is no parameter to adjust the sampling density.)

6.1 Accuracy

We run three different types of experiments.

Real Scanner Data. To evaluate the accuracy of the different
reconstruction algorithms on real-world data, we gathered several
scanned datasets: the Awakening (10M points), the Stanford Bunny
(0.2M points), the David (11M points), the Lucy (1.0M points),
and the Neptune (2.4M points). For each dataset, we randomly
partitioned the points into two equal-sized subsets: input points
for the reconstruction algorithms, and validation points to measure
point-to-reconstruction distances.

Figure 4(a) shows reconstructions results for the Neptune and
David models at depth 10. It also shows surface cross-sections
overlaid with the validation points in their vicinity. These images
reveal that the Poisson reconstruction (far left), and to a lesser ex-
tent the SSD reconstruction (center left), oversmooth the data, while
the wavelet reconstruction (center left) has apparent derivative dis-
continuities. In contrast, our screened Poisson approach (far right)
provides a reconstruction that faithfully fits the samples without
introducing noise.

Figure 4(b) shows quantitative results across all datasets, in the
form of RMS errors, measured using the distances from the vali-
dation points to the reconstructed surface. (We also computed the
maximum error, but found that its sensitivity to individual outlier
points made it an unreliable and unindicative statistic.) As the fig-
ure indicates, the screened Poisson reconstruction (blue) is always
more accurate than both the original Poisson reconstruction algo-
rithm (red) and the wavelet reconstruction (purple), and generates
reconstruction whose RMS errors are comparable to or smaller than
those of the SSD reconstruction (green).

Clean Uniformly Sampled Data. To evaluate reconstruction
accuracy on clean data, we used the approach of Osada et al. [2001]
to generate oriented point sets by uniformly sampling the surfaces
of the Fandisk, Armadillo Man, Dragon, and Raptor models. For
each model, we generated datasets of 100K and 1M points and
reconstructed surfaces from each point set using the four different
reconstruction algorithms.

As an example, Figure 5(a) shows the reconstructions of
the Fandisk and Raptor models using 1M point samples at
depth 10. Despite the lack of noise in the input data, the wavelet
reconstruction has spurious high-frequency detail. Focusing on
the sharp edges in the model, we also observe that the screened
Poisson reconstruction introduces less smoothing, providing a
reconstruction that is truer to the original data than either the
original Poisson or the SSD reconstructions.

Figure 5(b) plots RMS errors across all models, measured bidirec-
tionally between the original surface and the reconstructed surface
using the Metro tool [Cignoni and Scopigno 1998]. As in the case
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Fig. 6. Results using the reconstruction benchmark of Berger et al. [2011].

of real scanner data, screened Poisson reconstruction always out-
performs the original Poisson and wavelet reconstructions, and is
comparable to or better than the SSD reconstruction.

Reconstruction Benchmark. We use the benchmark of Berger
et al. [2011] to evaluate the accuracy of the algorithms under differ-
ent simulations of scanner error, including nonuniform sampling,
noise, and misalignment. The dataset consists of multiple virtual
scans of implicit surfaces representing the Anchor, Dancing Chil-
dren, Daratech, Gargoyle, and Quasimodo models.

As an example, Figure 6(a) visualizes the error in the recon-
structions of the Anchor model from a virtual scan consisting of
210K points (demarked with a dashed rectangle in Figure 6(b))
at depth 9. The error is visualized using a red-green-blue scale,
with red signifying low error and blue signifying high error. The
top row shows the distance from the reconstructed surfaces to the
groundtruth, and the bottom row shows the distance from the input
samples to the reconstructed surfaces. Examining the top row, we
note that only the SSD reconstruction produces a low-error surface
inside the cylindrical hole. Looking at the point sets in the bottom
row, we observe that this region does not contain input samples, and
therefore the success of the SSD reconstruction reflects its ability

to better extrapolate the reconstruction into regions of missing
data. However, if we only consider the fit of the reconstructions
to the input point set (bottom row of Figure 6(a)) we find again
that our screened Poisson reconstruction outperforms both the
original Poisson reconstruction and the wavelet reconstructions,
and produces a surface whose fit to the input samples is comparable
to that of the SSD reconstruction.

More generally, Figure 6(b) shows the results of these experi-
ments with reconstructions computed at depth 9, giving the aver-
age distance from the reconstructions to the original implicit sur-
face (top) and the average angle between the normals of points
on the reconstruction and the normals of the corresponding points
on the implicit surface (bottom), as a function of the number of
point samples in the virtual scan. The results are visualized as scat-
ter plots giving the ratio of the errors for the wavelet, SSD, and
screened Poisson reconstructions to the errors of the original Pois-
son reconstruction. Thus, values less than one indicate improved
accuracy over Poisson reconstruction.

The results in Figure 6(b) therefore indicate that SSD reconstructs
a surface that is closest to the original model. Visual analysis as in
Figure 6(a) reveals that this improved accuracy is primarily due to
the quality of the extrapolated surface in regions of missing data.
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Table I. Runtime Performance of the Different Reconstruction Techniques on the David and Neptune Datasets at Depths 8, 9, 10, and 11

Time in seconds Memory in MB Vertices ×106

Model Depth Poisson Wavelet SSD Screened Poisson Wavelet SSD Screened Poisson Wavelet SSD Screened

Neptune

8 10 [13] 3 275 14 113 4 238 133 0.1 0.1 0.1 0.1

9 25 [17] 4 547 20 149 11 455 269 0.2 0.2 0.2 0.2

10 89 [36] 6 3302 44 422 35 1247 604 0.9 0.7 0.9 0.9

11 320 [105] 9 15441 126 1387 118 3495 1622 3.1 1.5 2.9 3.2

David

8 41 [45] 9 492 48 427 11 863 454 0.2 0.2 0.2 0.2

9 108 [66] 12 2355 73 510 38 1724 932 0.8 0.7 0.8 0.9

10 412 [157] 20 19158 182 1498 151 4895 2194 3.4 2.8 3.3 3.5

11 1710 [522] 43 †119119 609 5318 545 >8192 6188 12.8 7.3 11.6 13.3

The numbers in brackets are timing results obtained using our method without screening (α = 0), that is, after the algorithmic improvements of Section 5.
†Since the memory usage of SSD exceeds the available RAM, we report the CPU user time for this experiment rather than the wall-clock time.

Thus, measuring distances with respect to the ground-truth model
leads to relatively large errors in occluded surface regions which
naturally dominate the overall error statistics. This is corroborated
by the angular errors plotted in the bottom row. Since these errors
are formulated in terms of angles between normals, they emphasize
the quality of the high-frequency component of the reconstruction.
As such, they give lower weight in regions of missing data (where
the reconstructions tend to be smooth), so the comparable quality
of the SSD and screened Poisson reconstructions indicate that they
are of similar quality away from the missing data.

6.2 Computational Efficiency

Table I compares the (wall-clock) running time and memory usage
of all four algorithms in reconstructing surfaces at depths 8, 9, 10,
and 11 from the Neptune and David datasets. All experiments were
run on a laptop with a quad-core Intel Core i7 and 8GB of RAM.

Running Time. The wavelet reconstruction is fast; its use of
compactly supported, orthogonal basis functions lets the reconstruc-
tion algorithm compute the implicit function coefficients through
integration, never requiring the explicit solution of a linear system.

In contrast, the other three techniques use nonorthogonal basis
functions, thus requiring a global system solution. For the original
and screened Poisson reconstructions, the multigrid solver performs
a constant number of conjugate-gradient iterations at each level,
giving linear complexity in the number N of octree nodes. Thus,
increasing the depth by one roughly quadruples the computation
time.4 In contrast, the SSD reconstruction uses conjugate-gradients
to solve for all the coefficients simultaneously, which has a com-
plexity of O(N 1.5), resulting in significantly slower performance at
higher resolutions.

Interestingly, it might be possible to implement the SSD recon-
struction technique using second-order B-splines as basis func-
tions, just as in the Poisson reconstruction algorithms, and also
benefit from a similar multigrid framework. However, we believe
that this may not completely alleviate the performance bottleneck.
In particular, the technique of Calakli and Taubin incorporates a
Hessian smoothness term in the linear system. For the same dis-
cretization complexity, the condition number of the resulting system
matrix is square that of the Laplacian matrix used in the Poisson

4Although the octree construction phase is log-linear, the constant tends to
be small so this step does not dominate the running time in practice.

Fig. 7. Reconstruction of the Lucy model‡. When the input data has mis-
aligned scans, the screened Poisson reconstruction (right) more tightly fits
the noise, resulting in a visually lower-quality reconstruction than the one
returned by the original Poisson reconstruction (left).

reconstructions. Consequently, we expect the solver to require more
iterations on large problem sizes.

Table I also highlights the speedup due to our algorithmic com-
plexity improvements. When setting α = 0, the new algorithm
(shown in brackets) is 2–3 times faster than the original Poisson re-
construction algorithm. A small portion of this improvement (×1.1
to ×1.6) is due to multithreaded parallelization.

Even with the additional overhead of screening (which requires
explicit evaluation of the piecewise polynomial basis functions at
sub-voxel locations and cannot leverage the advantages of homo-
geneity used to accelerate the discretization of the Laplacian), our
running times are faster than the original Poisson reconstruction.

Memory Usage. The memory usage of the different recon-
struction algorithms also highlights the cost of formulating the
reconstruction problem in terms of the solution to a linear system.
Since the Poisson and SSD reconstructions define a linear system
using the two-ring neighbors, the system matrix can have as many
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Fig. 8. Reconstruction of the noisy Eagle dataset‡ using the original scheme [Kazhdan et al. 2006] and our new algorithm, with various settings of the
screening parameter (α) and samples per node (SPN). (The highlighted result is the one with the default parameters used for evaluation in Section 6.1.)

as 125 entries per row, resulting in a significant overhead for just
storing the matrix. In contrast, the wavelet reconstruction algorithm
does not need to solve a linear system and avoids the associated
memory overhead.

Reconstruction Resolution. The resolutions of the different
reconstructions are shown in the last four columns of Table I. In
practice, the resolution is determined by the depth of the octree,
the fraction of the unit-cube occupied by the bounding box of the
point set, the isosurfacing algorithm, and (for the Poisson, SSD,
and screened Poisson reconstructions) the sample density threshold
used in adaptive octree refinement. As the table shows, the similarly
set parameters result in reconstructions of similar resolution for the
original Poisson, SSD, and screened Poisson reconstructions.

6.3 Discussion and Limitations

Screening Parameter α. Empirically we have found that a
value of α = 4 works well for many types of datasets. We use
this value for all examples in this article. One nice property of
the screened Poisson equation (Eq. (3)) is that with sufficiently
fine decretization, both its energy terms (gradient and screening)
approach zero for the case of a uniform, noise-free sampling.
Intuitively, the two terms are compatible for the case of clean data.
In contrast, for the SSD reconstruction approach the smoothness
energy only reaches zero for a planar surface. Because curved
surfaces are penalized, the relative weighting of the different
energy terms is important, and the smoothness parameter may need
adjustment depending on the model geometry and the amount of
noise. (See discussion that follows.)

Overfitting. Although the screening of the Poisson equation
helps to more closely fit the input samples, there are circumstances
under which this may lead to undesirable reconstructions. Specifi-
cally, when the input data contains significant amounts of misalign-
ment or noise, the screened Poisson reconstruction will generate a
surface that interpolates these artifacts. Figure 7 shows an example
of this situation for the reconstruction of the Lucy model, with the
results of the original Poisson reconstruction shown on the left and

the results of the screened reconstruction shown on the right. Be-
cause the input scans from the right side of the face are misaligned
(the points in the cross-section at the bottom cluster along two dis-
tinct curves), the screened reconstruction generates a pock-marked
surface that undulates somewhat between the two scans.

This example also highlights a limitation of using the point-to-
surface distance. As shown in Figure 4(b), although the screened
Poisson reconstruction has lower visual quality, it still provides a
tighter fit to the data, resulting in RMS errors that are noticeably
smaller than those of the unscreened reconstruction.

Figure 8 shows an example with significantly noisy points, ob-
tained using a multiview stereo algorithm. In this case, the screening
term accentuates the noise in the reconstructed surface. Note, how-
ever, that the surface is stable, even over a wide range of α values.
The figure also shows the effect of increasing the samples/node pa-
rameter from its default value of 1. The resulting coarsening of the
octree structure helps to reduce reconstruction noise, but the simul-
taneous reduction in mesh resolution results in loss of detail. For this
noisy example, the best strategy is to reduce the screening parame-
ter α while keeping the samples/node parameter at 1. At an extreme
setting α = 0 we obtain an unscreened Poisson reconstruction as
in Kazhdan et al. [2006]. (The slight differences between our result
with α = 0 and the original Poisson reconstruction, particularly at
the base of the Eagle’s neck, derive from our use of a conforming
octree. Because we introduce additional leaf nodes near regions of
sparse sampling, we obtain a correspondingly refined triangulation
at those locations.)

By comparison, when applying the SSD approach on this noisy
data (Figure 9), it is difficult to find a smoothing parameter that
simultaneously preserves detail and avoids the formation of spurious
geometry (e.g., the ballooning at the tip of the beak).

Comparison with Data Interpolation. The recent scale-
space meshing of Digne et al. [2011b] is more akin to computational
geometry approaches in that it directly interpolates a filtered subset
of the original points.

Figure 10 compares our approach to such an interpolating recon-
struction for a 1.6M point set obtained from a noise-free scan of the
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Fig. 9. Reconstruction of the noisy Eagle dataset‡ using the smoothed signed distance reconstruction [Calakli and Taubin 2011] using various settings of the
Hessian weighting parameter (h). (The highlighted result is the one with the default parameters used for evaluation in Section 6.1.)

Fig. 10. Comparison of Poisson reconstruction with the interpolation technique of Digne et al. [2011b] for the head (top) and seal (bottom) of the Tanagra
model‡. (The highlighted result is the one with the default parameters used for evaluation in Section 6.1.)

Tanagra statue [Digne et al. 2011a]. As the figure shows, introduc-
ing screening improves the quality of the reconstruction, producing
surfaces that more closely resemble the result of scale-space mesh-
ing (right). While interpolation is able to better reproduce sharp
detail in the seal (bottom), it also results in a mesh with more
high-frequency oscillation of the surface normal in the head (top).

7. CONCLUSION

Adding a dualized screening term to the Poisson surface reconstruc-
tion framework significantly improves its geometric fidelity, while
still allowing an efficient multigrid solver. The reconstruction accu-
racy is comparable to or exceeds that of the smooth signed distance
reconstruction algorithm, yet the processing times are significantly
faster. Hierarchical clustering of the points and a conforming octree
structure enable a multigrid algorithm with linear complexity on the
number of input points.

Experiments show that the SSD algorithm is able to better ex-
trapolate the surface into regions of missing data. An interesting
area for future work would be to develop a scheme that incorpo-
rates both the Laplacian and bilaplacian operators, such that the
bilaplacian (which has higher cost in terms of convergence rate) is
only activated in the challenging, underconstrained regions of the
domain.

Some other avenues for future work include:

—generalization of the multigrid solver to support full V- and W-
cycles;

—parallelization of the algorithm for GPU computation;
—reconstruction of surfaces with boundaries;

—extension of the algorithm to incorporate additional knowledge
of the scanned surface, such as range maps and silhouettes; and

—adaptive refinement of the octree based on residuals measured at
coarser levels, to allow the output mesh complexity to adapt not
only to sampling density but also to solution quality.

APPENDIX

A. DUALIZED SCREENING

Following the Euler-Lagrange formulation, the function χ mini-
mizes Eq. (4) if, for any function D : [0, 1]3 → R,

0 = lim
ε→0

E(χ + εD) − E(χ )

ε

⇔ 0 = 〈∇ · �V − �χ,D〉[0,1]3 + α〈χ,D〉(w,P).

Thus, setting Ĩ to be the operator defined by

〈Ĩ (F ),G〉[0,1]3 = 〈F,G〉(w,P) ∀G,

it follows that χ is a minimizer of the energy if and only if

〈(� − αĨ )χ,D〉[0,1]3 = 〈∇ · �V , D〉[0,1]3 , ∀D,

that is, iff χ satisfies the equation

(� − αĨ )χ = ∇ · �V . (6)

One can interpret Eq. (6) as a (dually) screened Poisson equation.
Specifically, the innerproducts 〈·, ·〉[0,1]3 and 〈·, ·〉(w,P) define maps
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I[0,1]3 and I(w,P) from the space of functions into its dual, with
(
I[0,1]3 (f )

)
(g) = 〈f, g〉[0,1]3

(
I(w,P)(f )

)
(g) = 〈f, g〉(w,P)

for all functions f and g.
Using this notation, the operator Ĩ is the composition

Ĩ = I−1
[0,1]3 ◦ I(w,P). In traditional filtering applications the two inner

products are the same, so Ĩ is the identity and we get a screened Pois-
son equation. In our case the gradient and interpolation constraints
are defined over different domains and we require the operator Ĩ to
transition between the two.

For infinite-dimensional spaces, it is not always the case that Ĩ is
well-defined. However, for finite-dimensional spaces, one can al-
ways define such an operator by choosing a basis and representing Ĩ
by M−1

[0,1]3 ◦ M(w,P), where M[0,1]3 and M(w,P) are the mass matrices

for the chosen basis, defined with respect to the two inner products.5

(Note that the expression for Ĩ only requires that the mass matrix
M[0,1]3 be invertible, so the operator is well-defined even when
there are basis functions whose support does not intersect P .)
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