
Robust Meshes from Multiple Range Maps

Kari Pulli� Tom Duchamp� Hugues Hoppey

John McDonald� Linda Shapiro� Werner Stuetzle�
�University of Washington, Seattle, WA
yMicrosoft Research, Redmond, WA

Abstract

This paper presents a method for modeling the surface
of an object from a sequence of range maps. Our method
is based on a volumetric approach that produces a compact
surface without boundary. It provides robustness through
the use of interval analysis techniques and computational
efficiency through hierarchical processing using octrees.

1. Introduction

Surface reconstruction from range data involves four ma-
jor steps.

Step 1: Data acquisition. Range data sets covering the
surface to be modeled are obtained. Some pre-
processing of the data may be required, such as low-
pass filtering and removal of data points that belong
to other objects or background.

Step 2: Registration. In general, each range view is in
its own coordinate system. The collection of views
(range maps) are registered into a common object-
centered coordinate system.

Step 3: Integration. The separate registered range maps
are integrated into a single surface representation (of-
ten a polygon mesh).

Step 4: Optimization. The single surface representation
can be better fitted to the data, it may be further sim-
plified, or the representation can be converted to some
other format (e.g., smooth surfaces).

In this paper we propose a novel solution to Step 3. Our
method proceeds in two steps: it first hierarchically builds
a volumetric representation of an object, and then extracts
a triangle mesh from the volumetric representation. Our
method is efficient in computation time, is robust against
outliers, and automatically fills in small holes in range im-
ages due to gaps in the data. It can thus quickly recover

the topology of arbitrary surfaces, even in the presence of
outliers and missing data.

In Section 2 we describe our algorithm. We present our
results in Section 3, and we discuss our method and previ-
ous work in Section 4. Section 5 concludes the paper.

2. Algorithm

Our algorithm processes a cubical volume surrounding
all the input data in a hierarchical fashion. For each cube-
shaped partition, it checks whether the cube can be shown
to be entirely inside or outside of the object. If neither, the
cube is subdivided and the same test is recursively applied
to the resulting smaller cubes. Our surface approximation is
the closed boundary between cubes that lie entirely outside
of the object and all the other cubes.

2.1. Assumptions

We assume that the range data is expressed as a set of
range maps called views. Each view is like a 2D image, ex-
cept that at each pixel a 3D point is stored instead of a color
value. Further, we assume that the calibration parameters
of the sensor are known so that we can project any 3D point
to the image plane of the sensor. We also assume that the
line segment between the sensor and each measured point
lies entirely outside of the object we are modeling. Finally,
we assume that all range views have been registered to a
common coordinate system.

2.2. Processing a single range view

The initial volume is an axis-aligned cube that fully sur-
rounds all the range data. We use interval analysis to evalu-
ate the volumetric function on the cube. If the cube is nei-
ther completely inside nor completely outside the object,
we recursively subdivide it into eight smaller cubes, which
are added to the octree as children of the current cube. For
each of these cubes, we classify their location with respect
to the sensor and the range data. Note that the initial cube
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Figure 1. The three cases of the algorithm. In case 1 the cube is in front of the range data, in case 2
it is entirely behind the surface (with respect to the sensor), while in case 3 the cube intersects the
range data.

is always subdivided since it is by definition neither inside
nor outside the object.

There are three possibilities (see Figure 1).

� In case 1, the cube lies between the range data and
sensor. The cube is assumed to lie outside of the ob-
ject. It is not processed any further.

� In case 2 the whole cube is behind the range data. As
far as the sensor is concerned, the cube will be as-
sumed to lie inside of the object. It will not be further
subdivided.

� In case 3 the cube intersects the range map. In this
case we subdivide the cube into its eight children and
recursively apply the algorithm up to a pre-specified
maximum subdivision level. A case 3 cube at the
finest level is assumed to be at the boundary of the
object.

The cubes are labeled as follows. We project the eight
corners of the cube to the sensor's image plane, where the
convex hull of the points forms a
hexagon. The rays from the sen-
sor to the hexagon form a cone,
which we truncate so that it just
encloses the cube (see Figure 2).
If all the data points projecting
onto the hexagon are behind the
truncated cone (i.e., are farther
than the farthest corner of the
cube from the sensor), the cube
is outside. If all those points are

Figure 2: An octree cube
and its truncated cone. The ar-
row points to the sensor.

closer than the closest cube corner, the cube is inside. Oth-
erwise, we are in the boundary case. Possible missing data
is treated as points that are very close to the sensor.

Our labeling method is simple, but conservative. For
instance, if all the points projecting onto the hexagon are

actually behind the cube, but some of them are inside the
truncated cone, we would erroneously label the cube to in-
tersect the surface. This, however, is not a problem because
the next subdivision level will most likely determine that all
the children of the cube lie in the exterior of the object and
therefore remove them.

We could make our test tighter by performing a more
careful test for points that are within the truncated cone: For
each such point, determine the two faces of the cube inter-
sected by the ray associated with the point and test whether
the faces are behind, in front of, or around the point. It may
make sense to perform this extra test at the last subdivision
level.

2.3. Generalizations to multiple views

If multiple views are available, we have a choice of two
processing orders. We can traverse the whole octree once
and use the consensus of all the views to determine the la-
beling for each cube (simultaneous processing), or we can
process one view at a time, building on the results of the
previously processed views (sequential processing).

In simultaneous processing, we traverse the octree as we
did in the case of a single view. However, the cube labeling
process changes slightly.

� A cube is labeled to be inside the object only if it
would be labeled inside with respect to each single
view.

� A cube is labeled outside if it would be labeled out-
side with respect to any single view.

� Otherwise, the cube is labeled boundary and is further
subdivided, unless the maximum subdivision level
has been reached.

We use sequential processing if we later obtain a new
view that we want to integrate into a previously processed



Figure 3. Eight intensity images corresponding to the views of the miniature chair.

octree. We recursively descend the octree and perform the
occlusion test for each cube that has not been determined to
lie outside of the object. If the new view determines that a
cube is outside, it is relabeled and the subtrees below it are
removed. Similarly, a boundary label overrides a previous
inside label, in which case the cube's descendants have to
be recursively tested, potentially up to the maximum subdi-
vision level.

Although both processing orders produce the same re-
sult, the simultaneous processing order is in general faster
[12]. In sequential processing the silhouette of the object
often creates a visual cone (centered at the sensor) that sep-
arates volumes known to be outside from those speculated
to be inside. We would then have to recurse up to the finest
subdivision level to accurately determine this boundary. In
simultaneous processing, however, another view could de-
termine at a rather coarse level of subdivision that at least
part of that boundary is actually outside of the object, and
the finer levels of the octree for that subvolume need never
be processed.

Although slower, the sequential processing approach has
the advantage of being more memory efficient because it
only uses the data from a single view at a time.

In cases where a large number of views of the same ob-
ject are given, we can use a hybrid approach in which we
divide the views into smaller sets and sequentially apply si-
multaneous processing to each of the smaller data sets.

2.4. Pruning the octree

Due to our conservative label test, or if we use sequential
processing, we may determine that all the children of a cube
lie in free space. Whenever this happens the eight sibling
cubes are recursively collapsed into their parent, which is
then labeled also to be outside the object.

2.5. Mesh extraction

The labeling in the octree divides the space into two sets:
the cubes known to lie outside of the object and the cubes
that are assumed to be part of the object. Our surface esti-
mate will be the closed boundary between these sets. This
definition allows us to create a plausible surface even at lo-
cations where we failed to obtain data [4]. The boundary is
represented as a collection of vertices and triangles that can
be easily combined to a mesh.

The octree generated by the algorithm has the following
structure: outside cubes and inside cubes do not have any
children, while the boundary cubes have a sequence of de-
scendants down to the finest subdivision level. We traverse
the octree starting from the root. At an outside cube we do
nothing. At a boundary cube that is not at the finest level,
we descend to the children. If we reach the maximum sub-
division level and the cube is either at the boundary or inside
we check the labeling of the six neighbors. If a neighboring
cube is an outside cube, we create two triangles for the face
they share. In an inside cube that is not at the maximum
subdivision level, we check whether it abuts with an outside
cube, and in such case create enough triangles (of same size
as the ones created at the finest level) to cover the shared
part of the face.

In order to avoid producing multiple copies of the same
vertex, the vertices are put into a hash table and a new vertex
is created only if it does not already exist. The triangles are
combined into a closed triangle mesh.

3. Results

We have tested our method with both real and synthetic
data. The real data set consisted of eight views of a minia-
ture chair (Figure 3). Figure 4(a) shows the data points
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Figure 4. (a) The registered point set. (b) The
result from using the method of [6]. (c) The
result from our method.

(registered using a slightly modified version of Chen and
Medioni's method [1]) and the failed surface reconstruc-
tion that was our original motivation for this method. Even
though we have cleaned the data and removed most of the
outliers, we still have some noisy measurements close to
the surface, especially between the spokes of the back sup-
port of the chair. The algorithm from [6] does not use any
knowledge (such as viewing directions, etc.) of the data ex-
cept the points, themselves. It works quite nicely if the data
does not contain outliers and uniformly samples the under-
lying surface. Unfortunately real data, such as this data set,
often violate both of those requirements. Figure 4(b) shows
the result. In contrast, Figure 4(c) shows the result of our
method.

Figure 5 shows intermediate results of our method us-
ing the chair data set displaying the octree after 4, 5, 6, and
7 subdivisions. Figure 6 presents some statistics for pro-
cessing the chair data set. The final mesh in Figure 4(c) is
obtained from the level 7 octree. We smooth the mesh be-
fore displaying using Taubin's method [13]. Notice that the
spokes and the holes between them have been robustly re-
covered despite the large number of outliers and some miss-
ing data. This is partially due to the implicit removal of out-
liers that the algorithm performs: in most cases, there is a
view that determines that the cube containing an outlier lies
outside of the object.

Figure 7 shows the results from a synthetic data set. We
generated eight simulated range maps of a temple, regis-
tered the views, and applied our algorithm to them. The
left figure shows the smoothed result, while the right figure
shows the result after applying Hoppe's mesh optimization
algorithm [7].

Figure 5. The chair octree after 4, 5, 6, and 7
subdivisions.

levels nodes faces seconds
4 649 422 9.0
5 2377 1372 6.6
6 9393 5152 27.1
7 42657 18446 127.8

Figure 6. Statistics for Figure 5. For example,
at 5 levels of subdivision the octree contained
2377 nodes, the boundary between the ob-
ject and free space was 1372 faces (twice as
many triangles), and it took an additional 6.6
seconds to process from the level 4 octree.

Figure 7. Synthetic temple.



4. Discussion

4.1. Previous work

A popular approach to data integration has been to di-
rectly build surfaces from the data. Turk and Levoy [14]
and Rutishauser et al. [9] create a polygon mesh for each
view; the individual meshes are then connected to form a
single mesh covering the whole object. Soucy and Lauren-
deau [11] divide the range data into subsets based on which
surface regions are visible within each view. In each subset,
the redundancy of the views is used to improve the surface
approximation. Finally, the triangulated non-overlapping
subsets are connected into a single mesh. Pito [8] integrates
meshes by determining where the meshes overlap, choosing
the most reliable measurements, and connecting the patches
using a modification of [9]. Hoppe et al. [6] start from an
unorganized set of points, define a signed distance function
from the point set, and extract a mesh approximating the
zero set of that function. The mesh is iteratively fitted more
closely to the data and simplified [7]. The simplified mesh is
finally used as a starting point for fitting a piecewise smooth
surface representation to the data [5].

Curless and Levoy [4] define a volumetric function based
on an average of signed distances to each range image.
Their scheme discretely evaluates this volumetric function
at points on a uniform 3D grid, and uses these discrete sam-
ple values to determine a surface that approximates the ze-
roset of the volumetric function. As a consequence, their
scheme may fail to detect features smaller than the grid
spacing and has difficulties with thin features. Also, it re-
quires a significant amount of space, although this can be
alleviated through run-length encoding techniques.

Szeliski also used volumetric ideas, constructing octree
bounding volumes of the object from silhouettes extracted
from intensity images [12]. Octrees have also been used to
generate volumes and surfaces from range data. Chien et
al. [2] combine range quadtrees generated from six orthog-
onal viewing directions into an octree. Connolly [3] creates
an octree representation by organizing the range views into
quadtrees and projecting them to the octree, marking the
free space along the way.

Of the previous work, Connolly's [3] is closest to ours,
but it differs from ours in two important ways. Whereas
we project the octree cubes to the depth maps, Connolly
does the converse: he first converts the depth maps into
quadtrees and then projects them to the octree. Four rays
are projected from each vertex of a quadtree node to the
octree, and each octree node visited by a ray is removed.
Since the octree nodes that are traversed are roughly the size
of the quadtree node, the hole that is carved is jaggy and
larger than it should be. The carving could be made more
accurate by performing the carving at a finer level of res-

olution, but then the processing becomes more costly, and
it becomes more difficult to guarantee that all cubes that
should be removed are removed. The organization of the
range maps to quadtrees speeds up the processing only out-
side the visual cone of the object. Unless the object contains
many consecutive points that are equidistant from the sen-
sor (an unlikely event), the quadtree becomes fragmented.
This causes a great number of holes to be carved into the
octree at a fine level of resolution. Both these problems (too
much carving and carving at unnecessarily fine resolution)
are avoided in our method. The second major difference be-
tween the methods is that Connolly's method never removes
nodes that have been previously determined to contain a
range measurement. We explicitly want to allow this, since
that is our mechanism for getting rid of outliers. That is,
Connolly gives precedence to surface, while we give prece-
dence to a proof of empty space.

Like Curless and Levoy, we also define a volumetric
function (ours is a simple inside/outside binary function),
and seek an approximation of the surface that separates the
inside and outside regions. But, rather than discretely eval-
uating the volumetric function on a set of points, our ap-
proach is based on an interval analysis technique [10]. That
is, we partition space into regions (cubes) and conserva-
tively determine for each region whether it lies completely
inside, completely outside, or neither. Using recursive sub-
division, we efficiently prune away large regions of space
away from the object boundary, and focus both computa-
tion and storage right on the spatial region of interest, that
is, the region next to the surface.

The interval analysis techniques we use provide im-
proved robustness to our algorithm. To our knowledge, ours
is the first approach to use these techniques to range map in-
tegration.

4.2. Level of resolution

All volumetric methods require a choice of resolution
level. This choice provides a trade-off between the accuracy
of the result and requirements for both time and storage. In
octree methods such as ours, the resolution is determined by
the maximum depth of the octree and it must be specified by
the user.

Our algorithm facilitates the optimum choice of resolu-
tion appropriate to a given data set. For instance, if we no-
tice that our choice was too coarse to correctly capture the
object's topology correctly, we can easily use the results of
the previous runs and continue the process with increased
choice of maximum depth to achieve a finer resolution.

Of course, the maximum depth is limited by the point
density of the data set. Once an octree cube projects to only
one or two pixels on the sensor's image plane, the method
becomes less robust. A good rule of thumb is that the octree



cubes should be larger than each of the following three mea-
sures: surface sampling density, sampling error, and regis-
tration error.

4.3. Removal of outliers and background

We note earlier that we in effect remove outliers from
a view if another view testifies that the outlier lies in free
space. This observation shows that the algorithm can be
used to automatically remove background and other objects
from the views. Suppose that the views were obtained by
using a stationary range scanner and by reorienting the ob-
ject between the views and that we have registered the views
into a common coordinate system using a subset of surface
points. Now the background and other objects move rel-
ative to the object from view to view, and in general some
view can determine that they lie outside the object, in which
case the points can be labeled as background or removed al-
together.

Outliers that lie behind the surface as seen from the scan-
ner can be damaging, since they could cause our algorithm
to incorrectly carve away a piece of the object. For several
reasons, this has not been a problem for us. Most outliers
we have observed either belong to other objects in the back-
ground, or appear around the edges of the object. We use
background data to carve the space around the object more
efficiently, and outliers at the object boundaries do not cause
deep holes to be carved into the object.

Obtaining data points from the background is very im-
portant for correctly detecting holes. Curless and Levoy [4]
advocate the use of backdrops to solve this problem. How-
ever, with several types of scanners based on triangulation
it is extremely difficult to get measurements through a nar-
row hole. That was the case in several views of the chair
data set. In such cases we can manually paint parts of the
missing data to be background.

4.4. Thin objects

Some methods that employ a signed surface distance
functions are unable to correctly reconstruct thin objects.
Curless and Levoy [4], for example, build a distance func-
tion by storing positive distances to voxels in front of the
surface and negative distances to voxels behind the surface.
In addition to the distance, weights are stored to facilitate
combining data from different views. With this method,
views from opposite sides of a thin object interfere and may
cancel each other, preventing reliable extraction of the zero
set of the signed distance function.

Our volumetric method carves away the space between
the sensor and the object and does not construct a signed
distance function. In case of a thin sheet of paper, our algo-
rithm would construct a thin layer of octree cubes (voxels)

straddling the paper. Note however that our method can fail
in the presence of measurement noise and registration error
if the minimum cube size is set too small. Figure 8 illus-
trates this phenomenon.

(a)                (b)

Figure 8. A thin sheet seen from left (gray)
and right (black) is reconstructed correctly in
(a). In (b) registration error and small cube
size combine to cause a hole.

5. Conclusion

We have presented a method for robustly producing a
mesh from a set of range views of an object. The method
combines the robustness of the volumetric approach [4]
with the speed and small memory requirements of octree
methods [2, 3, 12]. Our method automatically fills holes due
to gaps in input data, it is robust against outliers, it allows
incremental addition of range views, and it can model ob-
jects of arbitrary topological type, even if the object is thin.
A more accurate and/or more concise surface representation
can be easily obtained by applying the optimization algo-
rithms described in [7, 5] to the output of our algorithm.
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