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(a) Input coarse image 

(1282 resolution) 
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structure transf. from (e) 
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Figure 1: Given both coarse and fine imagery (a,e), we construct a mipmap image pyramid with smooth visual transitions across scales.  
Our approach uses two new techniques: (b) structure transfer, which combines fine-scale detail and coarse-scale appearance to reduce 
ghosting artifacts, and (c,d) clipped Laplacian blending, which creates the intermediate resolution levels so as to avoid blurring. 

Abstract 
Multiscale imagery often combines several sources with differing 
appearance.  For instance, Internet-based maps contain satellite 
and aerial photography.  Zooming within these maps may reveal 
jarring transitions.  We present a scheme that creates a visually 
smooth mipmap pyramid from stitched imagery at several scales.  
The scheme involves two new techniques.  The first, structure 
transfer, is a nonlinear operator that combines the detail of one 
image with the local appearance of another.  We use this operator 
to inject detail from the fine image into the coarse one while 
retaining color consistency.  The improved structural similarity 
greatly reduces inter-level ghosting artifacts.  The second, clipped 
Laplacian blending, is an efficient construction to minimize blur 
when creating intermediate levels.  It considers the sum of all 
inter-level image differences within the pyramid.  We demonstrate 
continuous zooming of map imagery from space to ground level. 
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1 Introduction 
There is a large body of work in the computer graphics and GIS 
communities on stitching and fusing collections of images to form 
seamless maps or panoramas (Section 2).  Such techniques have 
been used to assemble the large datasets available on Internet 
services like Keyhole, TerraServer, Bing Maps, Google Maps, and 
Yahoo Maps. 
These multiresolution datasets incorporate several sources of 
imagery at different scales – for instance, satellite at coarse 
resolution and aerial photography at fine scale.  The data sources 
often vary significantly in appearance due to differences in spec-

tral response, seasonal changes, lighting and shadows, and custom 
image processing.  Therefore, zooming within the multiresolution 
image pyramid often results in abrupt changes in appearance, i.e., 
temporal “popping”.  In addition, spatial discontinuities may be 
observed in static perspective views, as these access several 
mipmap levels simultaneously (Figure 3). 

Goal   We create a visually smooth image pyramid that combines 
different data sources at different scales (Figures 1 and 2).  The 
input imagery is given at a subset of levels, and is assumed to be 
already stitched spatially using existing techniques.  While the 
problem of creating a full image pyramid may seem simple, 
several straightforward approaches have drawbacks: 
• One idea is to downsample the fine imagery all the way to the 

coarsest level of the pyramid, overwriting any coarser image 
content.  However, fine-scale imagery is often sparsely defined, 
and therefore the resulting coarser levels may have nonuniform 
appearance (Figure 4).  Instead, we want to preserve the spatial 
consistency of the coarse-scale image. 

• Another idea is to modify the fine-scale imagery to have the 
same color appearance as the coarse-scale content.  However, it 
is desirable to have distinct color histograms at coarse and fine 
scales.  Particularly, satellite imagery is often artificially colored 
to achieve an exaggerated appearance; it would be undesirable 
to apply this abstract coloring to aerial photography, which typi-
cally has a richer, more natural color histogram. 

 
Figure 2: Given sparsely defined fine-scale imagery, we create 
an image pyramid that is continuous across scales yet preserves 
the appearance uniformity of the coarse-scale image. 

 



  

 

  
(a) Original image pyramid (b) Result of our scheme 

Figure 3: Appearance differences across image pyramid levels 
are noticeable in perspective views.  (Example from Bing Maps.) 

 
Figure 4: Replacing coarse pyramid levels by downsampling the 
sparse fine imagery may lead to a patchwork appearance at 
coarser levels.  (Example from Google Earth.) 

Our aim is to simultaneously satisfy both multiresolution and 
spatial continuity.  These two objectives can be expressed as: 

(1) minimizing visual differences between all adjacent levels of 
the image pyramid, while 

(2) preserving the color characteristics of both the coarse-scale 
and fine-scale imagery. 

The visual difference between two images is often measured using 
the mean squared error (MSE) of corresponding pixels.  While 
this simple pointwise metric leads to convenient linear systems, it 
does not accurately capture the perceptual characteristics of the 
human visual system.  Rather, a metric that emphasizes structural 
similarity (SSIM) has been shown to be much more effective 
[Wang et al. 2004], and we adopt it in our approach. 
In particular, we will show that minimizing MSE alone results in 
an image pyramid with severe ghosting artifacts.  The fundamen-
tal problem is that the coarse and fine images have differences in 
structural detail due to misregistration, parallax, or many other 
factors in image acquisition and processing.  Explicitly consider-
ing structural similarity helps to overcome ghosting. 

Scheme   Maximizing structural similarity is unfortunately a 
nonlinear problem, and therefore expensive to solve directly.  To 
attain an efficient solution, we divide the problem into two sim-
pler parts (see Figure 5): 

(1) To maximize structural compatibility, we develop a structure 
transfer operation.  It modifies the coarse image to inherit the 
detail of the fine image while preserving its original local color 
characteristics (Section 5). 

(2) Given the now structurally compatible images, we minimize 
the sum of all inter-level image differences within the pyramid 
using the simple MSE metric.  An important detail is that this 
difference functional must be defined judiciously to avoid signal 
blurring.  Although minimizing MSE is a linear problem, a glob-
al solution over all pixels in a large pyramid is still costly.  We 
show that a good approximate solution can be found using an 
efficient construction, clipped Laplacian blending (Section 6). 

The overall process is illustrated in Figure 5.  Structure transfer 
combines the coarse image with the downsampled version of the 
fine image.  Next, clipped Laplacian blending creates the interme-
diate levels.  Finally, the structure-transferred coarse image is 
downsampled so that its new detail structure is propagated to even 
coarser levels.  The improvements in multiscale continuity due to 
our two novel techniques are demonstrated in Figure 6. 
The image pyramid construction is performed entirely as a pre-
process, so any 2D or 3D client renderer need not be modified to 
benefit from the improved multiresolution continuity. 

2 Related work 
Image stitching and fusion   Merging overlapping images to 
form a seamless composite is an active area in computer graphics 
[e.g., Pérez et al. 2003; Agarwala et al. 2004; Szeliski 2006].  
There is also significant work on fusion techniques that combine 
information from different types of sensors into a single image 
[Stathaki 2008].  In particular, several techniques merge low-
resolution multispectral and high-resolution grayscale images 
[e.g. Chavez et al. 1991; Pohl and Van Genderen 1998].  Our 
work assumes that different content sources have already been 
stitched or fused at two or more scales, and aims to create a 
complete pyramid that spans these stitched source images. 

Image pyramids   Multiscale structures are commonly used to 
represent, analyze, and process a given image.  A mipmap pyra-
mid provides a prefiltered representation for antialiased texture 
mapping [Williams 1983].  Laplacian image pyramids [Burt and 
Adelson 1983a], scale-space representations [Witkin 1983], and 
image wavelets [Antonini et al. 1992] allow efficient processing 
of bandpass data that is localized in both frequency and spatial 
domains.  Multiscale representations are used to merge images 
given at the same scale [Burt and Adelson 1983b].  To our 
knowledge, there is little work on creating a continuous pyramid 
from images provided at different scales. 

Image transfer   Reinhard et al. [2001] transfer appearance 
from one image to another using global color statistics.  Their 
operator can be seen as a global analogue to our localized struc-
ture transfer (Section 5).  Whereas their technique operates on two 
arbitrary images, ours is tailored for identical views of the same 
scene under differing appearance.  Liu et al. [2001] transfer detail 
from one face to another while preserving illumination using ratio 
images.  Kopf et al. [2007] introduce the joint-bilateral upsam-
pling filter, which allows operations performed on a downsampled 
image to be transferred to the original image. 

 
Figure 5: Schematic overview of our algorithm. 



  

 

Image histogram manipulation   Windowed histogram 
equalization achieves adaptive contrast enhancement by normaliz-
ing the histogram within local windows of the image [Pizer et al. 
1987].  Histogram-transfer modifies one image to adopt the global 
color histogram of another image [Gonzalez and Woods 1992; 
Pitié et al. 2007].  Our structure transfer operation builds on these 
ideas; it transfers local color distributions using a window-based 
approach. 

Other related work   Pang et al. [2008] apply the SSIM metric 
to structure-aware half-toning.  Oliva et al. [2006] present hybrid 
images, which superimpose features from two images to create a 
single image that is perceived differently at two different scales. 

3 Preliminaries 
We denote an image pyramid by a set 𝒳 = �𝑥0, … , 𝑥𝑓� where the 
coarsest image 𝑥0 contains a single pixel, and each image 𝑥𝑙 has 
2𝑙 × 2𝑙 pixels.  The most common form is a Gaussian pyramid, in 
which each level contains a low-pass filtered version of a given 
fine image 𝑥𝑓.  Denoted by 𝒢, it is formed by successively apply-
ing a downsampling filter: 

𝒢𝑓 = 𝑥𝑓,   𝒢𝑙−1 = 𝐷𝑙𝒢𝑙, 

where the rows of the sparse matrix 𝐷𝑙 encode the filter weights. 
Another useful form is a Laplacian or bandpass pyramid, which 
contains differences between successive Gaussian levels.  More 
precisely, each Laplacian level contains the difference between 
the current Gaussian level and an upsampled version of the next-
coarser Gaussian level: 

ℒ0 = 𝒢0,   ℒ𝑙 = 𝒢𝑙 − 𝑈𝑙−1𝒢𝑙−1. 

We define the upsampling matrix 𝑈, using the bicubic filter of 
Keys [1981], which is also known as Catmull-Rom interpolation.  
It is a tensor product of two 1D filters.  Evaluated on the pyramid, 
each 1D filter has weights (−9 111 29 −3)/128 and 
(−3 29 111 −9)/128 on alternate pixels. 
The downsampling filter is selected by taking the transpose of the 
upsampling matrix, i.e., 𝐷𝑙 = 𝑈𝑙−1𝑇 .  Consequently its 1D weights 
are (−3 −9 29 111 111 29 −9 −3)/256 .  It yields much 
better results than a simple box filter with weights (1 1)/2.  Let 
𝑈𝑘𝑙 = 𝑈𝑘𝑈𝑘+1 ⋯𝑈𝑙−1 denote the product of upsampling matrices 
from coarser level 𝑘 to finer level 𝑙, and similarly for the down-
sampling matrix 𝐷𝑙𝑘. 
We perform all computations in the CIE Lab color space, which is 
more perceptually faithful than RGB space. 

4 Our approach 
The inputs to our algorithm are coarse and fine images 𝑥�𝑐 and 𝑥�𝑓, 
respectively, and our output will be image pyramid levels {𝑥𝑙}.  
The finest level 𝑥𝑓 = 𝑥�𝑓 will remain unmodified.  We begin by 
defining a quantitative objective both to guide the design of our 
algorithm and to evaluate results.  Because explicitly maximizing 
the objective is costly, we will develop a practical algorithm that 
efficiently approximates it. 

Objective functional   Our goal is to minimize visual differ-
ences between successive pyramid levels, while preserving the 
color characteristics of the coarser pyramid levels.  We formulate 
these two goals as the maximization of the objective 

𝐸(𝒳) = � MSSIM(𝐷𝑙𝑥𝑙 , 𝑥𝑙−1)
𝑙=1…𝑓−1

+ � Mlc(𝑥𝑙 ,𝐷𝑐𝑙𝑥�𝑐)
𝑙=0…𝑐

. (1) 

The first term sums the mean structural similarity (MSSIM) of all 
adjacent pyramid levels.  As detailed in [Wang et al. 2004], 
MSSIM(𝑥,𝑦) of two images 𝑥,𝑦 is the mean SSIM over all corre-
sponding 11 × 11 pixel neighborhoods 𝑢 ⊂ 𝑥,𝑣 ⊂ 𝑦.  The neigh-
borhood SSIM is defined as the product of 3 factors: 

SSIM(𝑢, 𝑣) = 𝑙(𝑢, 𝑣) ⋅ 𝑐(𝑢,𝑣) ⋅ 𝑠(𝑢, 𝑣). 
The luminance similarity 𝑙, the contrast similarity 𝑐, and the 
structure comparison 𝑠 are defined in terms of the mean colors 𝜇, 
standard deviations 𝜎, and covariance 𝜎𝑢𝑢 of the neighborhoods: 

𝑙(𝑢, 𝑣) = 2𝜇𝑢𝜇𝑣+𝑐1
𝜇𝑢2+𝜇𝑣2+𝑐1

,   𝑐(𝑢, 𝑣) = 2𝜎𝑢𝜎𝑣+𝑐2
𝜎𝑢2+𝜎𝑣2+𝑐2

,   𝑠(𝑢, 𝑣) = 𝜎𝑢𝑣+𝑐3
𝜎𝑢𝜎𝑣+𝑐3

. 

These neighborhood statistics are weighted with a spatial Gaussi-
an kernel with a standard deviation of 2 pixels.  The small con-
stants 𝑐1, 𝑐2, 𝑐3 exist to ensure numerical stability, and are set as in 
[Wang et al. 2004].  The product above simplifies to 

SSIM(𝑢, 𝑣) =
�2𝜇𝑢𝜇𝑦 + 𝑐1�(2𝜎𝑢𝑢 + 𝑐2)

(𝜇𝑢2 + 𝜇𝑢2 + 𝑐1)(𝜎𝑢2 + 𝜎𝑢2 + 𝑐2). 

We compute SSIM over each color channel independently and 
take their mean.  The MSSIM measure reaches a maximum value 
of 1.0 when two images are identical. 
The second term of (1) measures the color similarity of the origi-
nal and modified coarse image levels.  Specifically, the mean 
luminance-contrast similarity keeps only the first two factors: 

Mlc(𝑥,𝑦) = 1
|𝑥|
∑ 𝑙(𝑢, 𝑣) ⋅ 𝑐(𝑢,𝑣)𝑢⊂𝑥,𝑢⊂𝑦 , 

and thus ignores structural detail.  Because the finer image 𝑥𝑓 is 
unaltered in our construction, it is unnecessary to measure its 
color fidelity. 

Algorithm   Maximizing 𝐸(𝒳) is a nonlinear problem over 
many variables, and is therefore difficult to directly optimize.  
Instead, we approximate this maximization using a three-step 
approach: 

• Step 1: Replace 𝑥�𝑐 by 𝑥𝑐 to maximize  

 max
𝑥𝑐

  Ms�𝑥𝑐 ,𝐷𝑓𝑐𝑥𝑓� + Mlc(𝑥𝑐 , 𝑥�𝑐), (2) 

where the first term measures only structural compatibility: 

Ms(𝑥,𝑦) = 1
|𝑥|
∑ 𝑠(𝑢, 𝑣)𝑢⊂𝑥,𝑢⊂𝑦 . 

This first step finds a new coarse image that is structurally similar 
to the downsampled fine image but whose color characteristics 
match those of the input coarse image 𝑥�𝑐.  Structure transfer is a 
fast local algorithm that approximates this (Section 5). 

• Step 2: Create the intermediate image levels as 

 min
𝑥𝑐+1…𝑥𝑓−1

 � 4−𝑙‖𝐷𝑙+1𝑥𝑙+1 − 𝑥𝑙‖2
𝑙=𝑐..𝑓−1

, (3) 

which minimizes the mean-squared error between each pyramid 
level and the downsampled next-finer level.  Intuitively,  the 
structural compatibility provided by Step 1 allows us to construct 
the intermediate images using this simple (linear) MSE metric in 
place of the more complicated MSSIM term of Equation (1).  
Furthermore, our clipped Laplacian blending provides a fast 
approximate solution to this optimization (Section 6). 

• Step 3: Replace the coarser levels by downsampling 𝑥𝑐. 
This downsampling makes all coarser levels structurally identical 
(i.e., MSSIM(𝐷𝑙𝑥𝑙 , 𝑥𝑙−1) = 1 for 𝑙 ≤ 𝑐).  Because we maximize 
Mlc(𝑥𝑐 , 𝑥�𝑐) in Step 1 and downsampling preserves luminance and 
contrast, Mlc(𝑥𝑙 ,𝐷𝑐𝑙𝑥�𝑐) is also high for coarser levels 𝑙 < 𝑐. 



  

 

5 Structure transfer 
The coarse and fine images often come from different sources, so 
their detail structure generally does not align precisely.  Conse-
quently, any linear blending operation effectively creates a super-
position of features from both images (Figure 6a,c). 
To address this ghosting problem, our idea is to trust the detail 
from only one of the two images, namely the finer image.  This 
choice is easily motivated.  Imagery is typically captured at the 
limit of the acquisition resolution, and may therefore suffer from 
chromatic aberration, sensor noise, or demosaicing error.  By 
combining many pixels of the finer image using a high-quality 
downsampling, we reduce these defects. 
Therefore, the goal is to find a new coarse image 𝑥𝑐 that combines 
(1) the structural detail of the downsampled fine image 𝐷𝑓𝑐𝑥�𝑓 and 
(2) the local color distribution of the original coarse image 𝑥�𝑐.  
We refer to 𝑆 = 𝐷𝑓𝑐𝑥�𝑓 and 𝐶 = 𝑥�𝑐 as the structure and color 
images, respectively. 
Our solution, structure transfer, is to build a Gaussian model for 
the local distribution of colors in the neighborhood of each pixel 
in both images, and to use the z-score (also called the standard 
score) of the center pixel from 𝑆 to select the color value with the 
identical score in 𝐶.  Concretely, our algorithm performs the 
following steps at each pixel location (Figure 7): 

• Compute the mean 𝜇𝑆 and standard deviation 𝜎𝑆 of the neigh-
borhood in the structure image. 

• Find  𝑧 = (𝑣 − 𝜇𝑆)/𝜎𝑆 where 𝑣 is the color of the center pixel. 

• Obtain the new color as  𝑣′ = 𝜇𝐶 + 𝑧𝜎𝐶  where 𝜇𝐶 and 𝜎𝐶 are 
the neighborhood statistics in the color image. 

 
Figure 7: Structure transfer.  For each pixel in S, we compute its 
z-score within its weighted local window and output the equal-
scored value from the corresponding window of C. 

  
Simple downsampling Structure transfer 

Figure 8: Unlike simple downsampling, structure transfer is able 
to preserve appearance continuity at the boundaries of sparsely 
defined data (here the inset square). 

This computation is performed separately for each color channel.  
We additionally weight the contributions of pixels in the window 
using a 2D Gaussian; we have obtained the best results with a 
standard deviation of 4 pixels over a window of 212 pixels. 
Structure transfer approximates the maximization (2), as it pre-
serves the local luminance (mean value 𝜇) and contrast (𝜎) of the 
color image 𝐶 while altering the detail (z-scores) to correlate with 
the structure image 𝑆.  We illustrate this in Figure 9, where our 
result (c) has incorporated the structure and color from the respec-
tive inputs (a,b).  The intermediate z-scores, visualized in Figure 
9d, are quite different from a traditional high-pass linear filter or 
ratio image, in that the magnitudes adjust to the local contrast of 
the structure image.  In the context of our full system, structure 
transfer reduces blurring (right column of Figure 6), and provides 
excellent appearance continuity at the boundary edges of sparsely 
defined fine-scale imagery (Figure 8). 

Optimization   Because the spatial Gaussian weighting used to 
compute the 21×21 window statistics (𝜇,𝜎) is separable, we 
efficiently amortize this computation over adjacent pixels.  For 
each row of pixels, we first compute Gaussian-weighted vertical 
sums ∑𝑤𝑖𝑣𝑖 and ∑𝑤𝑖𝑣𝑖2 in each 21×1 column centered about the 
row.  Then for each pixel, we further combine these initial sums 
using 1D Gaussian weights over a 1×21 horizontal window.  
Finally we determine 𝜇 = ∑𝑤𝑖𝑣𝑖 and 𝜎 = �∑𝑤𝑖𝑣𝑖2 − (∑𝑤𝑖𝑣𝑖)2. 
Comparison to global color transfer   As an alternative to 
our windowed z-score transfer, we also considered traditional 
global transfer methods (histogram transfer [Gonzalez and Woods 
1992] and color transfer [Reinhard et al. 2001]).  Applying these 
on a single image tile performs poorly as it does not allow local 
adaptation (Figure 9e; e.g., note how the river does not attain the 
expected appearance).  As this problem is only exacerbated for 
larger images, a global approach is clearly inappropriate for our 
problem domain. 

  
(a) Just linear interpolation (b) Structure transfer (Section 5) 

 + linear interpolation 

  
(c) Just CLB (Section 6) (d) Structure transfer + CLB 

Figure 6: Close-ups comparing the blended images at 2562 
resolution obtained with different interpolation strategies, using 
the input images of Figure 1.  Structure transfer reduces ghost-
ing, and clipped Laplacian blending (CLB) reduces blurring. 



  

 

  
(a) Input structure image 𝑆 (b) Input color image 𝐶 

  
(c) Structure transfer result  (d) Windowed z-score of 𝑆  

  
(e) Global histogram transfer (f) Windowed histogram transfer 

  
(g) Close-up of (c) (h) Close-up of (f) 

Figure 9:  Structure transfer (c) gathers the structure and color 
from the respective input images (a,b) using a simple z-score 
construction.  For illustration, we show (d) the z-score computed 
on the luminance channel.  By comparison, global histogram 
transfer (e) lacks local adaptivity, and windowed histogram 
transfer (f) results in characteristic grain noise artifacts (h). 

We also attempted a windowed version of histogram transfer 
(Figure 9f), but found that this led to the same type of noise grain 
artifacts (Figure 9g) observed by Pitié et al. in their (global) 
histogram transfer work [2007].  In addition to producing higher-
quality results (Figure 9h), our optimized z-score transfer algo-
rithm allows much faster execution. 

6 Pyramid construction 
To create the intermediate images { 𝑥𝑙 ∣∣ 𝑐 < 𝑙 < 𝑓 }, we minimize 
the pixel differences between successive levels.  Our approach 
defines inter-level differences as the mean squared error (MSE) 
between the downsampled finer image and the coarser image: 

 min
𝑥𝑐+1…𝑥𝑓−1

 � 4−𝑙‖𝐷𝑙+1𝑥𝑙+1 − 𝑥𝑙‖2
𝑙=𝑐..𝑓−1

. (4) 

Since this minimization defines a sparse linear system, we could 
solve it using an iterative solver.  However, we will show that the 
global minimum of (4) can be directly approximated using a far 
more efficient algorithm. 

6.1 Clipped Laplacian blending 
As derived in the appendix, minimizing (4) results in the local 
inter-level constraint 

 𝐷𝑙𝑥𝑙 = 1
2
�𝑥𝑙−1 + 𝐷𝑙+1𝑙−1𝑥𝑙+1�. (5) 

That is, the downsampling of each image should be a blended 
combination of the next-coarser image and the twice-
downsampled next-finer image. 
In concept, we can create a series of images that satisfies this 
constraint by directly building their Laplacian pyramids.  The 
endpoints are given by the input coarse and fine images, 𝑥𝑐 
and 𝑥𝑓.  The Laplacian pyramid of each intermediate image 𝑥𝑙 can 
be found by first linearly blending the Laplacian pyramids of the 
inputs, but only up to the level of the coarse image, and then 
copying details from the fine image (Figure 10).  Formally, 

 ℒ𝑘
𝑥𝑙 = �

(1 − 𝛼𝑙)ℒ𝑘
𝑥𝑐 + 𝛼𝑙ℒ𝑘

𝑥𝑓 𝑘 ≤ 𝑐 

ℒ𝑘
𝑥𝑓 𝑘 > 𝑐,

 (6) 

where 𝛼𝑙 is a simple interpolation weight, 𝛼𝑙 = (𝑙 − 𝑐)/(𝑓 − 𝑐). 
We refer to this scheme as clipped Laplacian blending, due to the 
intuitive Laplacian construction given above.  However, a more 
efficient construction is possible; significantly, it avoids having to 
compute and store Laplacian pyramids altogether. 

Efficient solution   From the definition of a Laplacian pyramid, 
𝑥𝑙 = ∑ 𝑈𝑘𝑙 ℒ𝑘

𝑥𝑙
𝑘=0…𝑙 , we can rewrite (6) as 

𝑥𝑙 = (1 − 𝛼𝑙)𝑈𝑐𝑙𝑑𝑐 + 𝒢𝑙
𝑥𝑓,   with  𝑑𝑐 = 𝑥𝑐 − 𝒢𝑐

𝑥𝑓, (7) 

which is proven in the appendix to satisfy constraint (5).  This 
interpretation leads to the construction illustrated in Figure 11.  

 
Figure 10: Clipped Laplacian blending creates intermediate-
resolution images by smoothly transitioning coarse levels of the 
Laplacian pyramids while iteratively adding intact fine detail. 

 
Figure 11: Equivalent efficient blending algorithm with 3 simple 
steps: (1) downsampling to form Gaussian pyramid, (2) coarse-
level differencing, and (3) fading the difference into the pyramid. 



  

 

We create the Gaussian pyramid 𝒢𝑥𝑓 of the fine image 𝑥𝑓, com-
pute the difference 𝑑𝑐  between the coarse image and the fine 
image downsampled to level 𝑐, upsample that difference to the 
intermediate level, and fade it into the Gaussian pyramid.  This 
solution offers a simple recurrence that lets all levels be evaluated 
in an efficient sequence of two passes over a pyramid structure.  
The complete algorithm is as follows: 

�𝑥𝑐+1 …𝑥𝑓−1� ← ClippedLaplacianBlend�𝑥𝑐, 𝑥𝑓� { 
 𝒢𝑓 = 𝑥𝑓   // Create the Gaussian pyramid of 𝑥𝑓 
 for 𝑙 = 𝑓 − 1 … 𝑐  //   by successive fine-to-coarse  
  𝒢𝑙 = 𝐷𝑙+1𝒢𝑙+1  //   downsampling operations. 
 𝑑 = 𝑥𝑐 − 𝒢𝑐  // Compute the coarse difference. 
 for 𝑙 = 𝑐 + 1 …𝑓 − 1 // Traverse the Gaussian pyramid, 
  𝑑 = 𝑈𝑙−1𝑑  //   upsampling the difference image, 
  𝛼𝑙 = (𝑙 − 𝑐)/(𝑓 − 𝑐) //   and adding a faded fraction 
  𝑥𝑙 = 𝒢𝑙 + (1 − 𝛼𝑙)𝑑 //   of it at each level. 
} 

Comparison to linear interpolation   One might consider an 
alternative form of the minimization (4), using ‖ 𝑥𝑙+1 − 𝑈𝑙𝑥𝑙‖2  as 
the MSE metric—that is, defining inter-level differences using the 
upsampled coarse level rather than the downsampled fine level.  
In fact, this formulation corresponds exactly to standard linear 
interpolation, which we illustrate in the top row of Figure 6.  As 
one might expect, direct linear interpolation results in ghosting 
artifacts; in comparison, clipped Laplacian blending (bottom row) 
yields much sharper results. 

6.2 Error analysis for non-orthogonal filters 
The algorithms developed in Section 6.1 (and the corresponding 
derivations in the appendix) assume that the up/downsampling 
filters used are orthogonal and transposes of each other. Formally, 

𝐷𝑙𝐷𝑙𝑇 = 1
4
𝐼   and   𝐷𝑙 = 𝑈𝑙−1𝑇  . 

The only low-pass filter that exactly satisfies both assumptions is 
the box filter, which is undesirable due to poor frequency charac-
teristics.  We chose to use higher-order cubic filters for their better 
frequency response; however, since they are not strictly orthogo-
nal they will introduce some small amount of error. 
As an empirical evaluation, we compared results from figures in 
this paper against reference solutions obtained by directly mini-
mizing (4) using Gauss-Seidel relaxation.  This analysis uses the 
coarse image after structure transfer.  Measuring the summed 
inter-level visual difference (4) for both sets of results, we find 
that the clipped Laplacian blending results typically differ by less 
than 1% from reference, with the greatest difference being un-
der 3% (see Table 1).  Subjectively, the results are visually indis-
tinguishable. 
 

Dataset 

Clipped 
Laplacian 

blend 

Reference 
solution 

% Error 

Figure 8 0.0034 0.0033 2.37% 
Figure 12 row 1 0.0094 0.0093 1.38% 
Figure 12 row 2 0.0106 0.0106 0.17% 
Figure 12 row 3 0.0672 0.0671 0.18% 
Figure 12 row 4 0.0130 0.0129 1.10% 
Figure 12 row 5 0.0139 0.0138 0.41% 
Figure 12 row 6 0.0092 0.0091 0.85% 

Table 1: Comparison of summed inter-level differences for the 
image pyramid created by clipped Laplacian blending and that 
obtained with the global linear least-squares solution. 

7 Implementation details 
Because imagery can be quite large (e.g. potentially covering the 
Earth), it is typically partitioned into tiles, both for efficient 
processing and for fast delivery over the Internet.  Fortunately, our 
two techniques (structure transfer and clipped Laplacian blending) 
only require access to local data.  We exploit this locality to 
design a fast out-of-core processing algorithm. 
We maintain images 𝒢𝑙,𝑥𝑙,𝑑𝑙  in 2562 tiles, in correspondence with 
the input.  We would like to minimize costly disk accesses, but in 
the course of processing a large image pyramid it becomes neces-
sary to temporarily store some tiles to disk while new tiles are 
computed.  To effectively manage this problem, we implemented 
a tile cache tailored to the access pattern of our algorithm. 
Since we know ahead of time the tile access order of our algo-
rithm, we can employ the optimal caching strategy, which is to 
evict the tile that will be needed furthest in the future [Belady 
1966].  Furthermore, we use the tile access order to pre-cache tiles 
in a background thread.  We tried a number of traversal schemes, 
and found that generating the finest-level tiles in Hilbert-curve 
order gave the best caching performance. 
Our implementation processes 64 Gpixels in 18 hours on a dual-
core Intel Core 2 PC.  Because the technique is parallelizable, 
larger datasets could be processed on a compute cluster. 

8 Additional results and discussion 
Our main dataset is imagery of the 
Earth’s surface sampled over a regular 
grid under a Mercator projection.  In 
the image pyramid, the coarsest resolu-
tion (level 0) contains a single 2562 
image tile, shown inset.  Level 20 
conceptually contains 240 such tiles, 
but is defined quite sparsely.  The input 
imagery comes from 3 main sources: 
level 8 (4-Gpixel) is “Blue Marble” satellite imagery; level 13 (4-
Tpixel) is “Landsat” satellite imagery; and levels 14 and above 
contain sparsely defined aerial photography.  Therefore, in most 
areas there are two discontinuous transitions across scales: from 
level 8 to 9, and from level 13 to 14. 

We applied our scheme to improve both of these transitions.  
Finding the number of levels over which to perform the transition 
is content-dependent and somewhat subjective.  As a general rule 
we strove to apply as short a transition as possible while 
still maintaining visual smoothness; ultimately we found that 4 
transition levels was sufficient for transitions from Landsat to 
aerial photography.  For the Blue Marble to Landsat transition, the 
color spaces were already well correlated and we were therefore 
able to generate good results using 3 levels. 

The top three rows of Figure 12 show examples of Blue Marble to 
Landsat transition, and the next two rows show examples of 
Landsat to aerial transition.  The structure-transferred results in 
the middle column show the benefit of injecting the additional 
detail from the fine-scale images.  The left column shows that 
modifying the detail structure does not result in objectionable 
spatial seams in the case that the fine-scale content is only sparse-
ly defined. 

Animations   The accompanying video shows 2×2 windows that 
compare zooming using different schemes: abrupt image transi-
tion, simple linear interpolation, CLB, and structure transfer plus 
CLB.  The video also shows real-time zooming from space to 
ground level, with both the original image data and our results. 



  

 

Limitations   The third row of Figure 12 shows a difficult case 
where the coarse and fine images differ substantially due to the 
difference in ice coverage.  In this case, gradual fading is una-
voidable although still less disconcerting than abrupt transitions 
(see videos).  The fourth row shows that if the source fine-scale 
image is poorly stitched (e.g. combines color and grayscale 
content), the seams are interpreted by the algorithm as structure 
and propagated to coarser levels; a reasonable solution in such 
cases would be to recolor the fine image as a preprocess.  As 
shown in Figure 8, our method is resilient to slight misregistra-
tions between source images.  However, performing a non-rigid 
registration [Crum et al. 2004] beforehand may lead to more 
desirable results. 

Quantitative analysis   Table 2 reports the quality of results on 
the data in the last row of Figure 12, as measured by the two terms 
of our objective (the inter-level structural similarity MSSIM and 
the coarse-level luminance-contrast fidelity Mlc).  The input data 
suffers from a discontinuous transition between levels 8 and 9.  
Clipped Laplacian blending improves results significantly, but 
ghosting adversely affects inter-level continuity.  Introduction of 
structure transfer leads to an image pyramid with the best objec-
tive score.  Table 3 summarizes these results across all the test 
images.  The numbers confirm our observation that the new image 
pyramids are visually smoother. 

 

Objective 
function 𝐸 in (1) 

Original 
abrupt 

transition 

Linear 
blend 

Clipped 
Laplacian 

blend 

Structure 
transfer 
+ CLB 

MSSIM 6.991 7.616 7.796 7.959 
level 4↔5 1.000 1.000 1.000 0.997 
level 5↔6 1.000 1.000 1.000 1.000 
level 6↔7 1.000 1.000 1.000 1.000 
level 7↔8 1.000 1.000 1.000 1.000 
level 8↔9 -0.009 0.906 0.913 0.983 

level 9↔10 1.000 0.856 0.947 0.991 
level 10↔11 1.000 0.883 0.962 0.994 
level 11↔12 1.000 0.972 0.975 0.994 

Mlc 5.000 5.000 5.000 4.915 
level 4 1.000 1.000 1.000 1.000 
level 5 1.000 1.000 1.000 0.996 
level 6 1.000 1.000 1.000 0.965 
level 7 1.000 1.000 1.000 0.968 
level 8 1.000 1.000 1.000 0.986 

𝐸=MSSIM+Mlc 11.991 12.616 12.797 12.874 
Table 2: Quantitative results for the images in the last row of 
Figure 12. 

 

 Objective function 𝐸 in (1) 

Dataset 

Original 
abrupt 

transition 

Linear 
blend 

Clipped 
Laplacian 

blend 

Structure 
transfer 
+ CLB 

Figure 9 12.197 12.700 12.851 12.874 
Figure 12 row 1 12.134 12.660 12.812 12.875 
Figure 12 row 2 12.404 12.719 12.816 12.839 
Figure 12 row 3 12.011 12.211 12.412 12.448 
Figure 12 row 4 12.077 12.639 12.819 12.882 
Figure 12 row 5 11.960 12.513 12.762 12.916 
Figure 12 row 6 11.991 12.616 12.797 12.874 
Table 3: Summary of quantitative results across all datasets. 

9 Summary and future work 
We have presented two new techniques that enable fast creation of 
smooth visual pyramids from dissimilar imagery, and demonstrat-
ed practical results on large datasets with a variety of content. 
As future work, one could consider more sophisticated Laplacian 
pyramid representations [e.g., Zarbman et al. 2008].  Structure 
transfer could be approached as a general optimization, much like 
the halftoning technique of Pang et al. [2008].  It would be inter-
esting to exploit information from input images across multiple 
scales to aid in image stitching. 
Structure transfer and clipped Laplacian blending are powerful 
tools that are likely to prove valuable in other application areas 
with aligned imagery.  In particular, a number of recent works in 
computational photography have used registered images with 
different exposures, focal lengths, flash settings, aperture sizes, 
image sensors, etc. [Petschnigg et al. 2004; Krishnan and Fergus 
2009].  One can also envision applications in embellishment of 
wide-angle panoramic photography with high-resolution overlays. 
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Appendix: Detailed proofs and derivations 
Minimizing (4) results in inter-level constraint (5) 
Taking the partial derivative of (4) with respect to a level 𝑥𝑙 and 
setting it to zero, we obtain 

2�4−(𝑙−1)�𝐷𝑙𝑇(𝐷𝑙𝑥𝑙 − 𝑥𝑙−1) − 2(4−𝑙)(𝐷𝑙+1𝑥𝑙+1 − 𝑥𝑙) = 
4𝐷𝑙𝐷𝑙𝑇(𝐷𝑙𝑥𝑙 − 𝑥𝑙−1) − 𝐷𝑙(𝐷𝑙+1𝑥𝑙+1 − 𝑥𝑙) = 0. 

Using the assumption 𝐷𝑙𝐷𝑙𝑇 = 1
4
𝐼, we obtain 

(𝐷𝑙𝑥𝑙 − 𝑥𝑙−1) − �𝐷𝑙+1𝑙−1𝑥𝑙+1 − 𝐷𝑙𝑥𝑙� = 0 

⇒    (𝐷𝑙 + 𝐷𝑙)𝑥𝑙 = 𝑥𝑙−1 + 𝐷𝑙+1𝑙−1𝑥𝑙+1 

⇒    𝐷𝑙𝑥𝑙 = 1
2
�𝑥𝑙−1 + 𝐷𝑙+1𝑙−1𝑥𝑙+1�.  

Efficient solution (7) satisfies constraint (5) 
For 𝑐 < 𝑙 < 𝑓, we must show that 

𝐷𝑙 �(1 − 𝛼𝑙)𝑈𝑐𝑙𝑑𝑐 + 𝒢𝑙
𝑥𝑓�

= 1
2
�
�(1 − 𝛼𝑙−1)𝑈𝑐𝑙−1𝑑𝑐 + 𝒢𝑙−1

𝑥𝑓 �  +

𝐷𝑙+1𝑙−1 �(1 − 𝛼𝑙+1)𝑈𝑐𝑙+1𝑑𝑐 + 𝒢𝑙+1
𝑥𝑓 �

�. 

Assuming 𝐷𝑙𝑈𝑙−1 = 𝐼, we obtain 

(1 − 𝛼𝑙)𝑈𝑐𝑙−1𝑑𝑐 + 𝒢𝑙−1
𝑥𝑓 = 1

2
�

(1 − 𝛼𝑙−1)𝑈𝑐𝑙−1𝑑𝑐 + 𝒢𝑙−1
𝑥𝑓  +

(1 − 𝛼𝑙+1)𝑈𝑐𝑙−1𝑑𝑐 + 𝒢𝑙−1
𝑥𝑓 � 

⇒    𝑈𝑐𝑙−1𝑑𝑐 �(1 − 𝛼𝑙) −
1
2
(1 − 𝛼𝑙−1) − 1

2
(1 − 𝛼𝑙+1)� = 0. 

The above holds true if 

𝛼𝑙 = 1
2
(𝛼𝑙−1 + 𝛼𝑙+1), 

which is satisfied by the linear interpolation weight 𝛼𝑙 = 𝑙−𝑐
𝑓−𝑐

. 

For 𝑙 = 𝑐, we have 𝛼𝑐 = 0, and can therefore verify that 

(1 − 𝛼𝑐)𝑈𝑐𝑐𝑑𝑐 + 𝒢𝑐
𝑥𝑓 = �𝑥𝑐 − 𝒢𝑐

𝑥𝑓� + 𝒢𝑐
𝑥𝑓 = 𝑥𝑐 . 

For 𝑙 = 𝑓, we have 𝛼𝑓 = 1, and can therefore verify that 

�1 − 𝛼𝑓�𝑈𝑐
𝑓𝑑𝑐 + 𝒢𝑓

𝑥𝑓 = 𝒢𝑓
𝑥𝑓 = 𝑥𝑓 . 

Derivation of efficient solution (7) from CLB (6) 
Using the definition of a Laplacian pyramid, 

𝑥𝑙 = 𝑈𝑙−1�⋯�𝑈0�ℒ0
𝑥𝑙� + ℒ1

𝑥𝑙� + ⋯� + ℒ𝑙
𝑥𝑙  

= � 𝑈𝑘𝑙ℒ𝑘
𝑥𝑙

𝑘=0…𝑙

, 

the solution given by the Clipped Laplacian blending (6), 

ℒ𝑘
𝑥𝑙 = �

(1 − 𝛼𝑙)ℒ𝑘
𝑥𝑐 + 𝛼𝑙ℒ𝑘

𝑥𝑓 𝑘 ≤ 𝑐 

ℒ𝑘
𝑥𝑓 𝑘 > 𝑐,

 

is re-expressed as the efficient solution (7) as follows: 

𝑥𝑙 = � 𝑈𝑘𝑙 �(1 − 𝛼𝑙)ℒ𝑘
𝑥𝑐 + 𝛼𝑙ℒ𝑘

𝑥𝑓�
𝑘=0…𝑐

+ � 𝑈𝑘𝑙ℒ𝑘
𝑥𝑓

𝑘=𝑐+1…𝑙

 

= 𝑈𝑐𝑙 �(1 − 𝛼𝑙) � 𝑈𝑘𝑐ℒ𝑘
𝑥𝑐

𝑘=0…𝑐

+ 𝛼𝑙 � 𝑈𝑘𝑐ℒ𝑘
𝑥𝑓

𝑘=0…𝑐

�

+ � 𝑈𝑘𝑙ℒ𝑘
𝑥𝑓

𝑘=𝑐+1…𝑙

 

= 𝑈𝑐𝑙 �(1 − 𝛼𝑙)𝑥𝑐 + 𝛼𝑙𝒢𝑐
𝑥𝑓� + � 𝑈𝑘𝑙ℒ𝑘

𝑥𝑓

𝑘=𝑐+1…𝑙

 

= 𝑈𝑐𝑙(1 − 𝛼𝑙)�𝑥𝑐 − 𝒢𝑐
𝑥𝑓� + 𝑈𝑐𝑙𝒢𝑐

𝑥𝑓 + � 𝑈𝑘𝑙ℒ𝑘
𝑥𝑓

𝑘=𝑐+1…𝑙

 

= (1 − 𝛼𝑙)𝑈𝑐𝑙𝑑𝑐 + 𝒢𝑙
𝑥𝑓   with   𝑑𝑐 = 𝑥𝑐 − 𝒢𝑐

𝑥𝑓 . 
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