
Parallel View-Dependent Refinement of Progressive Meshes
Liang Hu∗ Pedro V. Sander†

Hong Kong University of Science and Technology
Hugues Hoppe‡

Microsoft Research

Abstract
We present a scheme for view-dependent level-of-detail control that
is implemented entirely on programmable graphics hardware. Our
scheme selectively refines and coarsens an arbitrary triangle mesh
at the granularity of individual vertices, to create meshes that are
highly adapted to dynamic view parameters. Such fine-grain con-
trol has previously been demonstrated using sequential CPU al-
gorithms. However, these algorithms involve pointer-based struc-
tures with intricate dependencies that cannot be handled efficiently
within the restricted framework of GPU parallelism. We show that
by introducing new data structures and dependency rules, one can
realize fine-grain progressive mesh updates as a sequence of par-
allel streaming passes over the mesh elements. A major design
challenge is that the GPU processes stream elements in isolation.
The mesh update algorithm has time complexity proportional to
the selectively refined mesh, and moreover can be amortized across
several frames. The static data structure is remarkably compact, re-
quiring only 57% more memory than an indexed triangle list. We
demonstrate real-time exploration of complex models with normals
and textures.

1 Introduction
Efficient rendering of complex geometric models has been an active
research area for over a decade, with many level-of-detail (LOD)
representations offering tradeoffs in fidelity and speed. Intuitively,
models that are far away are rendered as coarser meshes. The most
challenging setting is a large-scale model that cannot be partitioned
into independent parts. Its surface mesh must be adapted in real-
time to selectively refine the nearby visible regions. Several so-
lutions to this view-dependent LOD problem have been explored
previously, as reviewed in Section 2.

Many early techniques for view-dependent LOD provide fine
granularity via vertex splits and edge collapses (Figure 1). These
techniques require sequential CPU algorithms to update pointer-
based data structures with intricate dependencies, and are therefore
difficult to implement efficiently on present system architectures.
First, the sequential algorithms cannot benefit from the available
GPU parallelism. And second, because the mesh is modified in sys-
tem memory, a duplicate copy must be transferred to video memory
at every frame for rendering. As a consequence, more recent LOD
research instead focuses on coarsely partitioning the mesh and stor-
ing static buffers in video memory. The sacrifice in LOD granular-
ity is offset by an improvement in frame rate.

Contribution In this paper, we present a framework that allows
vertex-level LOD updates to be performed in parallel on the GPU,
with all the data residing in video memory. Our approach makes use
of the programmable geometry shader introduced in recent GPUs,
which is able to process a stream of elements in parallel.

∗e-mail: nickyhu@cse.ust.hk
†http://www.cse.ust.hk/∼psander/
‡http://research.microsoft.com/∼hoppe/

Parallel view-dependent LOD control is a daunting problem. We
must perform “surgery” over an entire mesh as a parallel process, to
both coarsen and refine it adaptively, while maintaining consistent
connectivity, i.e. a watertight surface without holes, T-junctions,
or duplicate faces. Moreover, the computational model for GPU
streaming has major restrictions. Each stream element is processed
in complete isolation from all others, and a streaming pass cannot
both read and write the same memory buffer. In light of this, we
were initially unsure that a practical solution would be realizable.

Approach overview Previous fine-grain LOD algorithms all use
a traditional mesh data structure, in which each triangle face con-
tains references to its 3 neighboring faces. We soon discovered that
such a structure poses an obstacle because updating the references
in parallel is unwieldy. Face references cannot be read and writ-
ten in the same pass, and become stale after a single modification.
One of our insights is to design new data structures that obviate the
need for face neighbor references. In turn, the absence of neigh-
bor information requires new dependency conditions for vertex split
and edge collapse operations within the progressive mesh structure
(Section 3).

Our runtime representation has two main parts (Section 4). A
set of static structures encode a progressive mesh hierarchy for the
detailed input mesh. And, a set of dynamic structures encode the
active, selectively refined mesh. A unique aspect is that the active
mesh is fully specified by a stream of vertices. This stream contains
all vertices “above” the active frontier in the vertex hierarchy, and
simultaneously identifies both (1) the active vertices, which are on
the frontier, and (2) the active faces, which are created by vertices
split above the frontier.

We perform a set of parallel streaming passes to update the ver-
tex stream as the view parameters change, and to create an index
buffer for rendering (Section 5). All per-frame computations are
performed in time proportional to the complexity of the active mesh
rather than the fully detailed input mesh. Additionally, we automat-
ically partition this computation across multiple frames to maintain
a fixed frame rate (Section 6).

2 Previous work
There is vast literature describing different simplification and LOD
management strategies, as well as different error metrics and cri-
teria. For a comprehensive overview, including the original CPU-
based geometry update methods, refer to Luebke et al. [2002].

Early CPU methods for view-dependent LOD over arbitrary
meshes use fine-grain updates based on vertex splits and edge col-
lapses [Xia and Varshney 1996; Hoppe 1997] or octree-based ver-
tex clustering [Luebke and Erikson 1997]. As the GPU has become
more powerful, more recent methods typically maintain a fixed set
of static buffers in video memory, and switch or geomorph among
them [Cignoni et al. 2004; Borgeat et al. 2005; Sander and Mitchell
2005].

An interesting special case is that of terrains, whose vertices
lie on regular 2D grids. Such specialized methods are based on
both fine-grain mesh updates [Lindstrom et al. 1996; Duchaineau
et al. 1997; Lindstrom and Pascucci 2002], and coarse-grain up-
dates [Levenberg 2002; Cignoni et al. 2003]. More recent work
renders nested regular grids about the viewer [Losasso and Hoppe
2004]. Our work differs in that it handles the general case of arbi-
trary meshes.

Programmable graphics hardware has allowed many surface tes-
sellation approaches to migrate to the GPU, including isosurface
extraction [Pascucci 2004; Buatois et al. 2006], subdivison sur-
faces [Shiue et al. 2005], NURBS patches [Guthe et al. 2005], and
procedural detail [Boubekeur and Schlick 2005; Bokeloh and Wand
2006]. Whereas these approaches are typically used to amplify
coarse geometry, our refinement framework is designed to exactly
reproduce an arbitrary detailed mesh.

Two recent GPU-based LOD techniques are most closely related
to our goal of faithfully preserving detail of an arbitrary input mesh.
DeCoro and Tatarchuk [2007] present a scheme for simplifying ar-
bitrary meshes using octree-based vertex clustering. This clustering
strategy avoids precomputation and storage of a vertex hierarchy,
but the resulting approximating meshes are less accurate. Ji et al.
[2006] also perform LOD computations on the GPU. Their tech-
nique first resamples the input model onto a regular remesh over
a polycube map. A vertex shader is used to displace inactive ver-
tices to infinity. One key difference of our work from these two
techniques is that we do not require traversing the entire represen-
tation (e.g. the fully detailed input mesh) at every frame. Instead,
our per-frame computation is only proportional to the (selectively
refined) rendered mesh. Our system is the first to perform real-time
vertex-grain LOD over arbitrary triangle meshes on the GPU.

3 Vertex hierarchy and refinement dependencies

3.1 Vertex hierarchy
Our view-dependent LOD algorithm uses the vertex hierarchy of a
progressive mesh (PM) [Xia and Varshney 1996; Hoppe 1997]. The
construction is based on that of Hoppe [1997], with modifications
tailored to our parallel LOD update algorithm.

Given an arbitrary mesh Mn, a hierarchy is built by applying a
prioritized sequence of edge collapses:

Mn
coln−1−−−−⇀↽−−−−
spln−1

· · · · · ·
col1−−−⇀↽−−−
spl1

M1 col0−−−⇀↽−−−
spl0

M0

where colv is the collapse that creates vertex v, splv is the reverse
operation that splits v, and M0 is the base mesh that results after
all the collapses. Our method restricts the collapses to half-edge
collapses to produce a compact read-only vertex buffer [Kobbelt
et al. 1998].

Figure 1 shows a collapse and the split that inverts the opera-
tion. The pair of faces fv

l and fv
r , which are adjacent to vt and

vu, are removed by colv , and are created by splv . During PM con-
struction, we reorder the 3 vertices of every face in Mn such that
when performing colv , the vertices in fv

l and fv
r are {vt, vu, vl}

and {vu, vt, vr} respectively.
Figure 2 shows the subtree rooted at v in a vertex hierarchy. The

leaves are the vertices in Mn, and each non-leaf vertex v results
from the collapse of its two children vt and vu. Since half-edge col-
lapses are used, v has the same attributes (e.g., position, normal) as
its left child vt and transitively its leftmost descendant leaf, denoted
as vt∗ . Thus we need only store vertex attributes for the leaves, and
access them for any vertex v using vt∗ . We let vp denote the parent
of v, i.e. (vt)

p = v. The vertex hierarchy is linearized in memory,
with vertices assigned indices in the reverse order that they were
collapsed. Thus the leaf vertices are consecutive and last, and can
be distinguished from non-leaf vertices solely by their index. The
ordering also implies that v > vp for any vertex v.

A selectively refined mesh, denotedM , corresponds to a frontier
of active vertices within the hierarchy, as illustrated in Figure 2.
This frontier partitions the (non-leaf) vertices into split and col-
lapsed states.

3.2 Refinement dependency structure
To prevent foldovers of the triangles in the mesh, the splits and
collapses must adhere to dependency rules. In order to produce

colv

vu
fn1 fn3

vt
v

fl fr vrvl vl vr

f f

fn1
fn3

f ft

splv
fn0 fn2 fn0 fn2

Figure 1: The neighborhood around a split/collapse operation.

… …

 ݒ

௨ݒ ௧ݒ

 כ௧ݒ
݂
௩

݂
௩

 ݒ

ܯ

 ௧ݒ
௨ݒ

 ݒ

 ݒ

…

Performed ݈ݏ௫

Performed ݈ܿ௫

Leaf vertex א ܯ

Vertex frontier

… … …

ሼ ݂
௩, ݂

௩ሽ

ܯ

… …

ݔ

ݔ

Active vertex of
a triangle א ܯ
Leaf vertex of
a triangle א ܯ

Base mesh

Active mesh

Figure 2: Vertex hierarchy showing a subtree rooted at a vertex v.
Splitting v generates vertices vt, vu and the pair of faces {fv

l , f
v
r }.

A selectively refined mesh M corresponds to a frontier of active
vertices. All vertices above this frontier, colored blue, have been
split, whereas all vertices colored green are in their collapsed state.
The leaf vertices of the triangles fv

l and fv
r are shown with their

locations in the hierarchy.

a compact vertex hierarchy and perform efficient runtime tests
on the GPU, we introduce a new dependency structure. The ex-
plicit rules [Hoppe 1997] incur extra memory, whereas the implicit
rules [El-Sana and Varshney 1999] are too restrictive and would
require many more unnecessary vertex splits to meet the view-
dependent criteria. Additionally, they all require relatively complex
runtime tests. Our proposed approach follows the same refinement
flexibility as the explicit rules, but with a more compact represen-
tation inspired by the implicit rules, and most importantly it is well
adapted to GPU stream processing due to its simplicity.

During the PM construction, for each colv , each removed face
fv

l and fv
r is adjacent to two other mesh faces, {fv

n0 , f
v
n1} and

{fv
n2 , f

v
n3} respectively, as shown in Figure 1. At runtime, the ex-

plicit rules [Hoppe 1997] check for the presence and adjacency of
these four faces in the current selectively refined mesh. Specifically
the rules are as follows:

(i) A split splv is legal if the faces {fv
n0 , f

v
n1 , f

v
n2 , f

v
n3} all exist

in the current selectively refined mesh.

(ii) A collapse colv is legal if fv
l is currently adjacent to

{fv
n0 , f

v
n1} and fv

r is currently adjacent to {fv
n2 , f

v
n3}.

Unfortunately, test (ii) involves maintaining face adjacencies,
which is difficult in a parallel algorithm. Our approach is to per-
form a simpler check that involves storing two vertex indices in-
stead of four face indices. Specifically, we precompute vlmax =
max(cv(fv

n0), cv(fv
n1)) and vrmax = max(cv(fv

n2), cv(fv
n3))

where cv(f) is a non-ancestral vertex split that creates f . More
precisely, cv(f) is the vertex x whose split creates face f , unless
f ∈ M0 or x is an ancestor of v, in which cases cv(f) = 0. At

Table 1: Buffers used in runtime selective refinement. Labels L
and I denote leaf and non-leaf nodes of the vertex hierarchy. Mem-
ory usage is in bytes, where n and m are the number of vertices in
the original mesh Mn and active mesh M respectively. †Typically
the base mesh M0 has negligible complexity.

BUFFERS ELEMENTS CARDINALITY MEMORY

Static structures
Position 12n

VertexBuffer Texcoord L 4n
Normal 4n

{vt, vu, vt∗} I 12n
VertexTree vp L I 8n
RefineCriteria {δv, rv, sin

2 αv} I 4n
{v0, v1, v2} 18n

OrigFaces vlmax(vrmax) Mn

6n
BaseVStream v M0 −†
BaseFStream f M0 −†

Dynamic structures
VertexState vstate I n
VertexStream v M 4m× 2
IndexBuffer {v0, v1, v2} M 24m× 2

Total 69n+ 56m

runtime, given the side vertices vl and vr in M , we can check le-
gality as follows:

(I) A split splv is legal if vl > vlmax and vr > vrmax.

(II) A collapse colv is legal if (vl)
p < v and (vr)

p < v.

Our dependency rules conform to the explicit rules, which is proven
in the appendix.

4 Data structures
Our framework maintains a static VertexBuffer holding the vertex
attributes, and a dynamically updated IndexBuffer holding 3 vertex
indices per triangle face. These structures are used to render the
selectively refined mesh using a generic vertex shader. To maintain
the IndexBuffer, several static and dynamic data structures are re-
quired. These data structures, which are listed in detail in Table 1,
are stored on the GPU using sequential buffers. Note that we keep
a double-buffered IndexBuffer to allow asynchronous update of one
index buffer, amortized over multiple frames (Section 6), while ren-
dering the mesh using the other index buffer.

4.1 Static structures
The vertex hierarchy is stored in the VertexTree buffer. For each
vertex v we store the indices vt, vu, vt∗ and vp. Vertex v is also
associated with the two triangle faces fv

l and fv
r that are removed

from the mesh by the collapse colv . However, we do not keep their
indices explicitly with v, since they are simply 2v and 2v + 1. To
guarantee consistency on meshes with boundaries, where colv may
remove only one face fv

l at the boundary, we duplicate fv
l as fv

r

and insert it into Mn. Note that this does not incur any additional
rendering cost, and requires negligible memory since there are typi-
cally only a small fraction of boundary faces. Additionally, we store
parameters used for view-dependent refinement of the non-leaf ver-
tices in the RefineCriteria buffer.

The OrigFaces buffer stores for each face in the original mesh
Mn its vertex indices {v0, v1, v2} (i.e. 3 leaves in the vertex hierar-
chy). These indices are normally stored as 32-bit integers to support
large models, so each face in OrigFaces would require 12 bytes.
However, since meshes with more than 224 vertices (33.5 M trian-
gles) would occupy more than the 1 GB of available video memory,

Figure 3: The 3-step selective refinement algorithm.

our implementation uses 24 bits per index (9 bytes per face), and
uses the saved 3 bytes per face to encode the indices vlmax and
vrmax from Section 3.2.

Buffer BaseFStream stores the indices of the faces in the base
mesh M0. And, the indices of the vertices in M0 (i.e. the root ver-
tices in the hierarchy) are stored in a buffer BaseVStream to better
parallelize the update of VertexStream, as described in Section 5.

4.2 Dynamic structures
The VertexState texture stores for each vertex in the hierarchy one
of three possible states: {collapsed, split, splitting}. As their names
suggests, the split and collapse states identify vertices that have or
have not been split, respectively. The state splitting is needed by
the algorithm to identify vertices that are currently being split. For
details, refer to Section 5. Note that all vertices in the hierarchy
that are above the frontier are in either split or splitting state, while
the others are in collapsed state, as shown in Figure 2. We do not
have to associate states with the leaves since they cannot split. Due
to GPU hardware constraints, we store VertexState as a 2D texture
instead of a buffer.

Finally, the main data structure of our algorithm is the Ver-
texStream buffer, which contains a dynamically updated list of all
the vertices that have been split (i.e., those that are above the fron-
tier). This buffer is useful for identifying both the active vertices
and active faces in the current selectively refined mesh. Specifically
the set of active vertices (i.e., those on the frontier and in collapsed
state) and the set of active faces are defined as follows:

⋃
v∈M

v =
⋃

v∈VertexStream

⋃
x∈{vt,vu}

{x | xstate = collapsed}, (1)

⋃
f∈M

f = BaseFStream ∪

(⋃
v∈VertexStream

{fv
l , f

v
r }

)
. (2)

Note that we keep two VertexStream buffers, and ping-pong be-
tween them to avoid read-modify-write hazards (Section 5).

5 Runtime algorithm
The runtime algorithm dynamically updates IndexBuffer, which
stores the triangles in the selectively refined mesh. The update con-
sists of three processing steps as outlined in Figure 3. The first step
checks for desirable edge collapses and vertex splits, and updates
the vertex states accordingly; the second step updates and main-
tains the stream of active vertices based on the updated states; and
the final step generates the index buffer using the set of split vertices
and the updated frontier implied from the states. Next, we describe
each of the steps. Listing 1 provides detailed pseudocode.

UpdateVertexState We check for splits and collapses according
to the three view-dependent criteria – view frustum, surface ori-
entation and screen-space geometric error – from Hoppe [1998].
Additional splits may be required to enforce the dependency rules.
The algorithm starts by first setting the states of all elements in
VertexStream to collapsed. Next, it traverses the vertices in Ver-
texStream to update their states. This is accomplished by generat-
ing point primitives in the geometry shader and rendering the up-
dated state to the VertexState texture, which is addressable by vertex
index. In the traversal, we set the state of the vertices that do not
collapse to split. For the children of the vertices in VertexStream
that are active inM (following (1)), we test if they should split, and
if so, update their states to splitting. In addition, we also test their
children. By doing so, we allow up to two hierarchy levels to split
simultaneously within each update iteration, thereby resulting in a
more efficient update.

Satisfying all split dependencies for the new splits would require
performing recursive updates by forcing splits on potentially remote
vertices in the mesh. Such splits can be arbitrary in number and in
nesting within the hierarchy. Hoppe [1997] makes use of a stack
to record and then force the chain of required splits. Unfortunately,
such an approach is infeasible on the GPU due to the limitations on
the output size of a geometry shader instance. A naı̈ve approach
would be to mark dependent splits and wait multiple iterations until
all dependencies are satisfied before splitting a vertex. However,
this would cause a significant temporal lag in LOD refinement.

To overcome this problem we introduced a cascaded update
method that updates new splits without respecting their dependen-
cies, and forces the adjacent constraining vertices to split in sub-
sequent updates. Specifically for each splv , we continue splitting
the active side vertices vl and vr in fv

l and fv
r every iteration as

long as they still constrain splv . This scheme is significantly faster
as it takes many fewer algorithm iterations to fully propagate. The
drawback is that it may result in temporary foldovers in the mesh
surface. However, the LOD update is so fast that such foldovers are
hardly observed in all our experiments (see accompanying video).

Forcing adjacent splits may be in conflict with desired collapses
on the same vertices, and it is impossible to explicitly identify these
conflicts in one pass since they arise in parallel execution paths.
We resolve these conflicts by performing additional compensating
splits. Specifically, for the side vertices vl and vr that are involved
in the dependent splits from v, we also update the states of their
parents (vl)

p and (vr)
p to split, in case the parents are collapsing

in their own executing instances.

UpdateVertexStream The second step outputs an updated Ver-
texStream by using the stream out functionality. In this step, the al-
gorithm traverses the vertices in VertexStream and outputs all child
vertices that are not in collapsed state. We output the children rather
than the vertices themselves to save one state check per instance.
We output the root vertices in BaseVStream directly in a quick pre-
ceding pass. Newly split vertices that are two levels deeper in the
hierarchy are identified and output as well.

UpdateIndexBuffer Finally, we update IndexBuffer by writing
out the active triangle faces ofM (following (2)). More specifically,
the indices of the active vertices in every pair of faces {fv

l , f
v
r } as-

Listing 1 Pseudocode for the 3 steps of our algorithm
// Step 1
procedure UpdateVertexState

1: for v ∈ VertexStream in parallel do
2: vstate ← collapsed
3: for v ∈ VertexStream in parallel do
4: vl ← (fv

l)v2 , vr ← (fv
r)v2

5: if Active(vt) and Active(vu) and not VDCoarsen(v) then
6: vstate ← split
7: for x ∈ {vt, vu} do
8: if Active(x) then
9: for y ∈ {x, xt, xu} do

10: if VDRefine(y) then
11: ystate ← splitting
12: if vl < vlmax then
13: (vl)state ← splitting, ((vl)

p)state ← split
14: if vr < vrmax then
15: (vr)state ← splitting, ((vr)

p)state ← split

function bool Active(v)
1: // return vstate = collapsed // leads to read-write hazard
2: return v = (vp)t ? v = (fvp

l)v0 : v = (fvp

l)v1

function bool VDRefine(v)
1: Test view-dep. refinement criteria using {δv, rv, sin

2 αv}.

function bool VDCoarsen(v)
1: return (vl)

p < v and (vr)
p < v and not VDRefine(v)

// Step 2
procedure UpdateVertexStream

1: for v ∈ BaseVStream in parallel do
2: Output v
3: for v ∈ VertexStream in parallel do
4: for x ∈ {vt, vu} do
5: if xstate 6= collapsed then
6: Output x
7: for y ∈ {xt, xu} do
8: if xstate = splitting and ystate = splitting then
9: Output y

// Step 3
procedure UpdateIndexBuffer

1: for f ∈ BaseFStream in parallel do
2: OutputFace(f)
3: for v ∈ VertexStream in parallel do
4: OutputFace(fv

l), OutputFace(fv
r)

function OutputFace(f)
1: for v ∈ OrigFaces[f] do
2: while (vp)state = collapsed do
3: v ← vp

4: Output v

sociated with each split vertex v in the updated VertexStream are
streamed out to IndexBuffer. We obtain the indices of the active ver-
tices in M by retrieving the indices of the leaf vertices in the same
faces inMn from OrigFaces, and searching up the hierarchy for the
coarsest vertices in collapsed states. An additional preceding pass
streams out the triangle faces in M0 by traversing BaseFStream.

6 Amortized computation
Geometry LOD algorithms often amortize the refinement computa-
tion over multiple frames to maintain a desired framerate [Hoppe
1997]. Our runtime update algorithm involves three update steps
that require different amounts of time. A naı̈ve amortization that
performs one update step per frame leads to oscillations in frame
times (see Figure 4). To try to maintain an upper bound T ∗ on the

No amortization

Naive amortization Per-step amortization Full amortization

...

...

Figure 4: Amortization mechanisms. The width of each bar repre-
sents the time incurred by that step of the update algorithm. Full
amortization manages to keep frame times low and consistent.

Table 2: Statistics for the original meshes used in our experi-
ments and the number of faces used in the selectively refined meshes
shown in Figure 7.

Input meshes Meshes in Figure 7

Model Total Memory Rendered Rendering
name # faces (MB) # faces time (ms)

Lucy 2,000,000 65.8 88,432 4.6
Terrain 2,097,147 69.0 179,013 7.5
Dragon 7,218,906 237.5 290,892 15.2
Statue 10,000,000 329.0 389,566 22.2

frame time (e.g., 33.3 ms), at the beginning of each update itera-
tion, we dynamically partition the update steps. We explore two
such mechanisms.

Per-step amortization The first mechanism partitions each step
i ∈ {1, 2, 3} individually. Specifically, at algorithm iteration k, it
partitions the input stream Sk

i for step i uniformly into Nk
i seg-

ments (see Figure 4). The number of segments Nk
i is estimated

based on the previous iteration as Nk
i = d |S

k
i |

|Sk−1
i |

· T k−1
i
T∗ e where

T k−1
i is the total time spent in step i in the previous iteration. The

mechanism automatically adapts to the update load of the selec-
tively refined mesh at runtime, but still suffers from frame time os-
cillations due to the absence of load balancing across different steps
of the algorithm.

Full amortization The second mechanism alleviates this prob-
lem by allowing multiple algorithm steps to be executed within
the same frame (see Figure 4). As in the previous approach, this
method also keeps an estimate of the cost of each step based on
the previous update. The algorithm determines what fraction of the
current step can be executed within the current frame time budget
T ∗. If the step can only be executed partially, the remainder is car-
ried over to the following frame. If the step can be executed fully,
then the algorithm again determines what fraction of the upcom-
ing step fits within the remaining budget and can be executed. The
algorithm proceeds in this fashion until it exhausts the time budget.

7 Results
We implemented our algorithm in Microsoft DirectX 10 using an
Intel Core2 CPU with 2GB memory and an NVIDIA GeForce 8800
GTX graphics card. All shaders are written in HLSL using shader
model 4.0. For all examples we use a window size of 1280x800
pixels and a screen-space error tolerance of 1 pixel.

Frame rate Figure 7 shows selectively refined meshes for the
models in Table 2. The frame times for the renderings in Figure 7a
are shown in Table 2.

Figure 5 graphs the relationship between the number of faces in
the current active mesh M and the time it takes to perform all of

70

Dynamic viewpoint

50

60

(m
s)

Dynamic viewpoint

Static viewpoint

30

40

da
te

 ti
m

e

10

20U
pd

0
0 100 200 300 400 500 600

Number of faces (in thousands)()

Figure 5: Update times as a function of the number of faces in the
active mesh M when no splits and collapses are necessary (static
viewpoint), and when splits and collapses are applied as part of
typical viewer motion (dynamic viewpoint).

80

No amortization Naive amortization
Per-step amortization Full amortization

60

70

(m
s)

40

50

m
e

tim
e

10

20

30

Fr
am

0 10 20 30 40 50 60 70

20

25

ec
on

d

10

15

s p
er

 se

5

10

er
at

io
ns

0
0 10 20 30 40 50 60 70

It

Animation time (s)

Figure 6: Timings measurements (top) and algorithm iterations per
second (bottom) for the Statue rendering sequence using different
amortization strategies.

the algorithm passes. With a static viewpoint, the processing time
is clearly linear on M . This linear-time computation has been ob-
served for all of the models in our test suite. Figure 5 also graphs
the processing time when using a typical camera motion (dynamic
viewpoint). Note that the introduced splits and collapses cause ad-
ditional processing and geometry amplification, thus slowing down
the update. The added GPU data amplification cost is not pro-
hibitively expensive and the relationship remains roughly linear on
the size of M . The variation is due to the differing number of splits
and collapses for the measurements.

Figure 6 (top) graphs the frame time of each amortization
method for a Statue rendering sequence using a target frame time
upper bound T ∗ of 33.3 ms. Without amortization, the cost incurred
by the update is clearly above the desired frame time. Naı̈ve amorti-
zation partitions the update into 3 frames thereby improving frame
time significantly. However, due to the high relative costs among
the update passes, the frame time still oscillates heavily. Per-step
amortization further partitions each step to ensure that frame times
are no higher than T ∗. Note, that, while it reduces frame times,
varying step costs may still cause significant oscillation. Finally,
the full amortization method is able to better maintain the target
frame rate by allowing multiple passes to be processed within the
same frame, as described in Section 6. Note, however, that a com-
pletely stable frame time cannot be guaranteed since the GPU al-

Table 3: Comparison of memory size with prior schemes.

View-dependent LOD scheme Memory size (bytes)

VDPM [Hoppe 1997] 216n
SVDLOD [Hoppe 1998] 88n+ 100m
MT [Floriani et al. 1998] 75n
VDT [El-Sana and Varshney 1999] 90n
FastMesh [Pajarola and DeCoro 2004] 88n+ 6m
Our scheme 69n+ 56m

gorithm cannot predict drastic changes in M , which would result
in immediate slowdowns in some of the passes. Therefore, occa-
sional performance spikes are unavoidable. However, even with the
nearly-dizzying camera motions shown in the accompanying video,
the spikes are rare and do not significantly harm the observed frame
rate across this entire sequence.

Both per-step and full amortization manage to reduce frame time
to the desired target bound T ∗. When only considering these two
satisfactory options, full amortization manages to accommodate the
entire update in fewer frames, as predicted in Figure 4 and evi-
denced in Figure 6 (bottom), which graphs the total number of iter-
ations per second.

Memory analysis Our data structures use a total of 69n + 56m
bytes, where n and m are the numbers of vertices in the original
and active meshes respectively. For sufficiently detailed models,
it is generally impossible to view all surface regions at high res-
olution within a frame, so typically m � n. Thus the memory
bottleneck is the size 69n of the static portion of our structures.
As shown in Table 3, this compares favorably with previous view-
dependent LOD schemes, which is surprising given our challenging
parallelism restrictions. In addition, most prior schemes perform
immediate-mode rendering (e.g. with glVertex() calls), whereas our
dynamic data structures (56m bytes) maintain explicit index buffers
that permit more efficient rendering on present graphics systems.

Limitations Our index buffers define indexed triangle lists rather
than strips, so take more space than an optimized static mesh. Also,
the ordering of faces within this list is not optimized for vertex
cache locality. Finally, our system does not yet support geomorphs
for smooth temporal transitions. However, the LOD updates are fast
and the screen-space error tolerance is small enough that popping
is nearly imperceptible.

8 Conclusion and future work
We present the first view-dependent LOD algorithm for vertex-level
mesh refinement that operates entirely on the GPU. Our scheme
performs general vertex splits and edge collapses to incrementally
and selectively refine an irregular hierarchy as a sequence of par-
allel streaming steps. The approach is highly parallel, processing
many splits and collapses simultaneously. Because the mesh is up-
dated and rendered using a constant number of draw calls, CPU
utilization is near zero. The cost of these draw calls is further amor-
tized over multiple frames using a simple feedback mechanism.

One of our contributions is to overcome the difficulties imposed
by GPU parallel processing. This involves a new, compact depen-
dency structure and a cascaded update method. In future work, it
would be interesting to consider more general parallel processing
APIs. For instance, NVIDIA’s CUDA and AMD’s Stream Com-
puting expose local shared memory and allow scattered reads and
writes to the same memory buffer. The current version of CUDA
does not support parallel streaming whereby each stream instance
can output a variable number of elements, which is essential in our
approach. However, it is likely that such APIs will continue to im-
prove in programming flexibility.

The parallel nature of our algorithm lets it scale with the number
of stream processors in the GPU. Thus we expect greater perfor-

mance gains as the GPU evolves to include more processors. The
stream-based approach may also be applicable to other parallel ar-
chitectures, as it provides an elegant way to decouple an irregular
refinement algorithm into dependency-free passes. Finally, we hope
that our ideas may inspire new algorithms for handling irregular
data structures within parallel architectures.

Acknowledgments
We would like to thank Lei Yang for help on the video production,
and the anonymous reviewers for their comments. The Dragon and
Statue are courtesy of the Stanford 3D scanning repository.

References
BOKELOH, M. and WAND, M. 2006. Hardware accelerated multi-

resolution geometry synthesis. In I3D ’06: Proceedings of the
2006 Symposium on Interactive 3D graphics and games, pages
191–198.

BORGEAT, L., GODIN, G., BLAIS, F., MASSICOTTE, P., and LA-
HANIER, C. 2005. GoLD: interactive display of huge colored
and textured models. ACM Transactions on Graphics, 24(3):
869–877.

BOUBEKEUR, T. and SCHLICK, C. 2005. Generic mesh refine-
ment on GPU. In HWWS ’05: Proceedings of the ACM SIG-
GRAPH/Eurographics conference on Graphics hardware, pages
99–104.

BUATOIS, L., CAUMON, G., and LÉVY, B. 2006. GPU accelerated
isosurface extraction on tetrahedral grids. International Sympo-
sium on Visual Computing, pages 383–392.

CIGNONI, P., GANOVELLI, F., GOBBETTI, E., MARTON, F.,
PONCHIO, F., and SCOPIGNO, R. 2003. BDAM: batched dy-
namic adaptive meshes for high performance terrain visualiza-
tion. Computer Graphics Forum, 22:505–514.

CIGNONI, P., GANOVELLI, F., GOBBETTI, E., MARTON, F.,
PONCHIO, F., and SCOPIGNO, R. 2004. Adaptive tetrapuzzles:
Efficient out-of-core construction and visualization of gigantic
multiresolution polygonal models. ACM Transactions on Graph-
ics, 23(3):796–803.

DECORO, C. and TATARCHUK, N. 2007. Real-time mesh simpli-
fication using the GPU. In I3D ’07: Proceedings of the 2007
Symposium on Interactive 3D graphics and games, pages 161–
166.

DUCHAINEAU, M., WOLINSKY, M., SIGETI, D. E., MILLER,
M. C., ALDRICH, C., and MINEEV-WEINSTEIN, M. B. 1997.
ROAMing terrain: real-time optimally adapting meshes. In IEEE
Visualization 97, pages 81–88.

EL-SANA, J. and VARSHNEY, A. 1999. Generalized view-
dependent simplification. In Proceedings of Eurographics 99,
pages 83–94.

FLORIANI, L. D., MAGILLO, P., and PUPPO, E. 1998. Efficient
implementation of multi-triangulations. In VIS ’98: Proceedings
of the conference on Visualization ’98, pages 43–50.

GUTHE, M., BALÁZS, A., and KLEIN, R. 2005. GPU-based
trimming and tessellation of nurbs and T-spline surfaces. ACM
Transactions on Graphics, 24(3):1016–1023.

HOPPE, H. 1997. View-dependent refinement of progressive
meshes. In Proceedings of ACM SIGGRAPH 1997, pages 189–
198.

HOPPE, H. 1998. Smooth view-dependent level-of-detail control
and its application to terrain rendering. In VIS ’98: Proceedings
of the conference on Visualization ’98, pages 35–42.

JI, J., WU, E., LI, S., and LIU, X. 2006. View-dependent refine-
ment of multiresolution meshes using programmable graphics
hardware. The Visual Computer, 22(6):424–433.

(a) (b) (c) (d)

Figure 7: Renderings of our selectively refined meshes with a procedural texture (a) and in wireframe mode (b). The same mesh is then
visualized from a different viewpoint in wireframe mode (c), and with color-coded LOD (d), where green represents higher detail than red.
Note that mesh regions that lie outside the frustum, farther away, or facing away from the camera, have lower LODs. The error tolerance is
less than one pixel.

KOBBELT, L., CAMPAGNA, S., and PETER SEIDEL, H. 1998.
A general framework for mesh decimation. In Proceedings of
Graphics Interface, pages 43–50.

LEVENBERG, J. 2002. Fast view-dependent level-of-detail render-
ing using cached geometry. In VIS ’02: Proceedings of the con-
ference on Visualization ’02, pages 259–266.

LINDSTROM, P., KOLLER, D., RIBARSKY, W., HODGES, L. F.,
FAUST, N., and TURNER, G. A. 1996. Real-time, continuous
level of detail rendering of height fields. In Proceedings of ACM
SIGGRAPH 1996, pages 109–118.

LINDSTROM, P. and PASCUCCI, V. 2002. Terrain simplification
simplified: A general framework for view-dependent out-of-core
visualization. IEEE TVCG, 8(3):239–254.

LOSASSO, F. and HOPPE, H. 2004. Geometry clipmaps: ter-
rain rendering using nested regular grids. ACM Transactions on
Graphics, 23(3):769–776.

LUEBKE, D. and ERIKSON, C. 1997. View-dependent simplifi-
cation of arbitrary polygonal environments. In Proceedings of
ACM SIGGRAPH 1997, pages 199–208.

LUEBKE, D., WATSON, B., COHEN, J. D., REDDY, M., and

VARSHNEY, A. 2002. Level of Detail for 3D Graphics. Else-
vier Science Inc., New York, NY, USA.

PAJAROLA, R. and DECORO, C. 2004. Efficient implementa-
tion of real-time view-dependent multiresolution meshing. IEEE
TVCG, 10(3):353–368.

PASCUCCI, V. 2004. Isosurface computation made simple: hard-
ware acceleration, adaptive refinement and tetrahedral stripping.
In Joint Eurographics - IEEE TVCG Symposium on Visualization
(VisSym), pages 293–300.

SANDER, P. V. and MITCHELL, J. L. 2005. Progressive buffers:
View-dependent geometry and texture for LOD rendering. In
SGP ’05: Proceedings of the third Eurographics Symposium on
Geometry Processing, pages 129–138.

SHIUE, L.-J., JONES, I., and PETERS, J. 2005. A realtime GPU
subdivision kernel. ACM Transactions on Graphics, 24(3):1010–
1015.

XIA, J. C. and VARSHNEY, A. 1996. Dynamic view-dependent
simplification for polygonal models. In VIS ’96: Proceedings of
the 7th conference on Visualization ’96, pages 327–334.

Appendix

Lemma 1. The dependency rules (I) and (II) conform to (i) and (ii)
respectively, i.e., (i)⇒(I) and (ii)⇒(II).

Proof. (i)⇒(I): Suppose vl > vlmax. We first prove that fv
n0 ex-

ists. By definition of vlmax, vl ≥ cv(fv
n0) and vl ≥ cv(fv

n1).
We denote x = cv(fv

n0). The face fv
n0 exists in the current selec-

tively refined mesh if x = 0 by definition, otherwise x 6= 0 and
fv

n0 is created by splx, which means the vertex x is an ancestor
of two vertices in triangle fv

n0 . Since x 6= 0, x is not an ances-
tor of v (and therefore vt). And because vl is adjacent to fv

n0 and
vl ≥ x, x must be an ancestor of vl. Therefore fv

n0 also exists
since splx has been performed otherwise vl would not be active.
The same argument holds for the existence of fv

n1 , and similarly
supposing vr > vrmax, then {fv

n2 , f
v
n3} also exist. Since (i) is

true, it follows that whenever vl > vlmax and vr > vrmax, then
{fv

n0 , f
v
n1 , f

v
n2 , f

v
n3} all exist, and splv is legal, i.e. (I) is true.

(ii)⇒(II): Since vt and vu are active, splv has been legally per-
formed. According to Hoppe [1997], {fv

n0 , f
v
n1} and {fv

n2 , f
v
n3}

must be pairwise adjacent at the time of splv . Now suppose
(vl)

p < v. We first prove that fv
l is adjacent to fv

n0 . We denote
f ′ as the face adjacent to vt, vl and fl, and denote x′ as the ver-
tex such that splx′ creates f ′. Suppose f ′ 6= fv

n0 . x′ cannot be
an ancestor of vt since fv

n0 and fv
n1 would otherwise not be ad-

jacent when performing splv . Then x′ must be an ancestor of vl

because splx′ creates f ′ and x′ is an ancestor of two vertices in f ′.
Since f ′ is adjacent to fl, splx′ must be performed after splv to
be considered legal, i.e. x′ > v, since otherwise fl would not be
present at the time of splx′ . However as x′ is an ancestor of vl,
x′ ≤ (vl)

p < v, which is a contradiction. Therefore f ′ = fv
n0

and fv
l is adjacent to fv

n0 . By the same argument, it can be shown
that fv

l is also adjacent to fv
n1 , and similarly supposing (vr)

p < v,
then fv

r is adjacent to {fv
n2 , f

v
n3}. Since (ii) is true, it follows that

if (vl)
p < v and (vr)

p < v, then fv
l is adjacent to {fv

n0 , f
v
n1} and

fv
r is adjacent to {fv

n2 , f
v
n3}. As a result, colv is legal, i.e. (II) is

also true.

