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Abstract
In computer graphics and geometric modeling, shapes are often represented
by triangular meshes. With the advent of laser scanning systems, meshes
of extreme complexity are rapidly becoming commonplace. Such meshes
are notoriously expensive to store, transmit, render, and are awkward to
edit. Multiresolution analysis offers a simple, unified, and theoretically
sound approach to dealing with these problems. Lounsbery et al. have
recently developed a technique for creating multiresolution representations
for a restricted class of meshes with subdivision connectivity. Unfortunately,
meshes encountered in practice typically do not meet this requirement. In
this paper we present a method for overcoming the subdivision connectivity
restriction, meaning that completely arbitrary meshes can now be converted
to multiresolution form. The method is based on the approximation of an
arbitrary initial mesh M by a mesh MJ that has subdivision connectivity and
is guaranteed to be within a specified tolerance.

The key ingredient of our algorithm is the construction of a parametriza-
tion of M over a simple domain. We expect this parametrization to be of use
in other contexts, such as texture mapping or the approximation of complex
meshes by NURBS patches.

CR Categories and Subject Descriptors: I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling. - surfaces and object rep-
resentations; J.6 [Computer-Aided Engineering]: Computer-Aided Design
(CAD); G.1.2 [Approximation]: Spline Approximation.

Additional Keywords: Geometric modeling, subdivision surfaces,
wavelets.

1 Introduction
In computer graphics and geometric modeling, shapes are often
represented by triangular meshes. With the advent of laser scan-
ning systems, meshes of extreme complexity are rapidly becoming
commonplace. The objects shown in Color Plates 1(k) and 2(g)
for instance, consist of 69,473 and 103,713 triangles, respectively.
Such meshes are notoriously expensive to store, transmit, and ren-
der. They are also awkward to edit, as many vertices typically must
be moved to make a change of substantial spatial extent.

Multiresolution analysis offers a promising new approach for
addressing these difficulties in a simple, unified, and theoretically
sound way. A multiresolution representation of a mesh, as recently
developed by Lounsbery et al. [11], consists of a simple base mesh
(Color Plate 1(e)) together with a sequence of local correction terms,

called wavelet coefficients, capturing the detail present in the object
at various resolutions. Color Plates 1(g)–(h) show a sequence of
intermediate resolution models incorporating an increasing number
of wavelets.

Multiresolution mesh representations are particularly convenient
for a number of applications, including:

� Compression/simplification: A multiresolution mesh can be
compressed by removing small wavelet coefficients. More-
over, the threshold for removal can be chosen such that the
resulting approximation is guaranteed to be within a specified
error tolerance of the original mesh. A number of examples
are shown in the color plates.

� Progressive display and transmission: An attractive method for
displaying a complex object is to begin with a low resolution
version that can be quickly rendered, and then progressively
improve the display as more detail is obtained from disk or
over a network. Using a multiresolution representation, this
is simply achieved by first displaying the base mesh, and then
progressively adding the contributions of wavelet coefficients
in order of decreasing magnitude.

� Level-of-detail control: High performance rendering systems
often use a level-of-detail hierarchy, that is, a sequence of
approximations at various levels-of-detail. The crudest ap-
proximations are used when the viewer is far from the object,
while higher detail versions are substituted as the viewer ap-
proaches. Multiresolution representations naturally support
this type of display by adding successively smaller wavelet co-
efficients as the viewer approaches the object, and by removing
them as the viewer recedes. Moreover, the coefficients can be
added smoothly, thereby avoiding the visual discontinuities
encountered when switching between approximations of dif-
ferent resolution. This use of multiresolution representations
is illustrated in Color Plates 1(k) and 1(l).

� Multiresolution editing: Editing at various scales can proceed
along the lines developed by Finkelstein and Salesin [4] by
ordering coefficients according to their support, that is, by the
spatial extent of their influence. Color Plates 2(e) and 2(f)
show edits of a mesh at low and high levels of detail.

Although the multiresolution analysis of Lounsbery et al. [11] can
be applied to meshes of arbitrary topological type, it has a serious
shortcoming: it is restricted to meshes with subdivision connectivity,
that is, to meshes obtained from a simple base mesh by recursive
4-to-1 splitting (see Figure 1). Figure 6(a) shows an example of
a mesh with subdivision connectivity — it results from recursively
splitting the faces of an octahedron four times. Unfortunately, few
of the meshes encountered in practice have this restricted structure.



In this paper we present a method for overcoming the subdivision
connectivity restriction, meaning that completely arbitrary meshes
can now be converted to multiresolution form. Our approach is to
develop an algorithm for approximating an arbitrary mesh M (as in
Color Plate 1(a)), which might not have subdivision connectivity,
by a mesh MJ that does (as in Color Plate 1(f)), and is guaranteed
to be within a prescribed tolerance �1 of M. We refer to this process
as remeshing, and we call MJ the remesh.

Multiresolution analysis of an arbitrary mesh M thus proceeds in
two steps: we first use remeshing to approximate M by a mesh MJ

with subdivision connectivity, and then use the method of Louns-
bery et al. to convert MJ to multiresolution representation. (Al-
though we cannot reproduce here all the results of Lounsbery et
al. [11], we have included a brief summary in Appendix A.)

The key ingredient of the remeshing procedure — and the prin-
cipal technical contribution of the paper — is the construction of
a parametrization of M over a base complex K0 possessing a small
number of faces. We then sample the parametrization to produce
the remesh. Considerable care is taken to create a parametrization
and a sampling pattern so that the resulting remesh can be well
approximated with relatively few wavelet coefficients.

The construction of parametrizations for complex shapes over
simple domains is a fundamental problem that occurs in numer-
ous applications, including texture mapping, and the approxima-
tion of meshes by NURBS patches. We therefore expect that our
parametrization algorithm will have uses outside of remeshing.

The remainder of the paper is organized as follows. In Section 2,
we describe the relationship between our work and previously pub-
lished methods. In Section 3, we give a high level overview of the
major steps of the remeshing algorithm. The details of the algorithm
are presented in Sections 4-7. In Section 8, we apply our method to
meshes of varying complexity, and give examples of compression,
level-of-detail control, and editing. We close with conclusions and
future work in Section 9.

2 Related Work
The difficulty of dealing with complicated shapes is evidenced by
the extensive recent research on the topic.

The problems of compression/simplification and level-of-detail
control have been addressed by Turk [20], Schroeder et al. [19],
Hoppe et al. [8], Rossignac and Borrel [16], and Varsney [22]. Our
approach differs from these methods in three principal respects.
First, it provides guaranteed error bounds, whereas the approaches
of Turk, Schroeder et al., and Hoppe et al. do not. Second, it
produces a single compact representation from which a continuous
family of lower resolution approximations can be quickly and eas-
ily constructed, whereas the previous methods generate a discrete
set of models of varying complexity. (We should note, however,
that Turk, and Rossignac/Borrel, and Varsney present methods for
interpolating between models.) Third, our representation can be
simply and conveniently edited at multiple scales, whereas it is hard
to imagine how one would achieve similar results using the previous
approaches.

The editing of complex shapes was a central motivation for the
introduction of hierarchical B-splines by Forsey and Bartels [6].
Forsey and Bartels [5] and Forsey and Wang [7] have subsequently
developed methods for fitting hierarchical B-splines to meshes topo-
logically equivalent to a disk. Finkelstein and Salesin [4] have
demonstrated how wavelet representations of B-spline curves and
tensor product surfaces can be used to achieve similar benefits. The
main advantage of our method is its ability to deal with shapes of
arbitrary topological type.

The problem of parametrizing meshes has recently been con-

sidered by Maillot et al. [12] in the context of texture mapping.
However, the parametrizations they construct are not useful for
our purpose: their surface tiles are not triangular, and their local
parametrizations do not fit together continuously. Additionally, our
local parametrizations, based on the well-established theory of har-
monic maps, are simpler to compute than the ones used by Maillot et
al., and seem to produce parametrizations of comparable quality (see
Section 4).

Finally, the technique of Schröder and Sweldens [18] could be
used in place of Lounsbery et al. for multiresolution analysis of the
remesh.

3 Overview of Remeshing
The basic idea of remeshing is to construct a parametrization of
M over a suitably determined domain mesh K0. This parametriza-
tion is then resampled to produce a mesh MJ that has subdivision
connectivity and is of the same topological type as M.

Our remeshing algorithm consists of three steps, as illustrated in
Color Plates 1(a)-1(h):

1. Partitioning: Partition M into a number of triangular regions
T1� ���� Tr, as shown in Color Plate 1(d). We want the number
r of regions to be small, because the lowest complexity ap-
proximation we can construct has r faces, as shown in Color
Plate 1(e). Basic tools used in partitioning are harmonic maps,
maps that preserve as much of the metric structure (lengths, an-
gles, etc.) of M as possible. Harmonic maps are described in
Section 4. A detailed description of our partitioning algorithm
is given in Section 5.
Identifying each of the m vertices or nodes of the triangulation
T1� ���� Tr with a canonical basis vector ofRm defines a mesh in
R

m, called the base complex, with a face corresponding to each
of the r triangular regions. This mesh serves as the domain of
the parametrization constructed in the next step.

2. Parametrization: For each region Ti of M construct a (local)
parametrization �i : Fi � Ti over the corresponding face Fi of
the base complex K0. The local parametrizations are made to
fit together continuously, meaning that collectively they define
a globally continuous parametrization � : K0 � M. We want
the coordinate functions of the parametrization to vary as little
as possible since such functions have multiresolution approx-
imations with few significant wavelet coefficients, leading to
high compression ratios. Harmonic maps in a sense minimize
distortion and therefore are particularly well suited for this pur-
pose. A description of the parametrization step is presented in
Section 6.

3. Resampling: Perform J recursive 4-to-1 splits on each of the
faces of K0 (see Figure 1). This results in a triangulation
KJ of K0 with subdivision connectivity. The remesh MJ , as
shown in Color Plate 1(f), is obtained by mapping the vertices
of KJ into R3 using the parametrization �, and constructing
an interpolating mesh in the obvious way; MJ therefore has
vertices lying on M, and has subdivision connectivity.
The resampling step is described more fully in Section 7, and
it is shown that J can be determined so that MJ and M differ
by no more than a specified remeshing tolerance �1.

4 Harmonic maps
A crucial building block of our remeshing algorithm is a method
for constructing a parametrization of a (topological) disk D � M
over a convex polygonal region P � R

2. This method is used in
two places: in the construction of the triangulation T1� � � � � Tr of
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Figure 1: 4-to-1 splitting of a triangular face: (a) the initial face; (b)
after one 4-to-1 split; (c) after two 4-to-1 splits.

M (see Section 5), and in the parametrization of M over the base
complex K0 (see Section 6). We want this parametrization to have
small distortion; for example, if D is (close to) planar, we want the
parametrization to be (close to) linear. Because the region may be
geometrically complex (see, for example, Figure 2), some distortion
is usually inevitable.

While it is not clear in general how to find a parametrization �with
small distortion, there is a closely related and well-studied problem
that has a unique solution: Fix a homeomorphism g between the
boundary of D and the boundary of the polygonal region P; then
there is a unique harmonic map h : D � P that agrees with g on
the boundary of D and minimizes metric dispersion (see Eells and
Sampson [3], pages 114–115, and the survey article by Eells and
Lemaire[2]). Metric dispersion is a measure of the extent to which
a map stretches regions of small diameter in D. It is thus a measure
of metric distortion.

In addition to minimizing metric distortion, the harmonic map h
has a number of important properties: (i) It is infinitely differen-
tiable on each face of D; (ii) it is an embedding [17]; and (iii) it is
independent of the triangulation of D. Because h : D � P is an
embedding, the inverse h�1 is a parametrization of D over P. We
will return below to the issues of choosing the boundary map g and
of computing approximations to h.

The dispersion minimizing property of harmonic maps is illus-
trated in Figure 2, which shows a piecewise linear approximation
of a harmonic map from a geometrically complex region onto a
polygon. The relatively dense regions of the polygon correspond to
the ears and nose of the cat. Notice that the aspect ratios of triangles
tend to be preserved. Notice also that the map introduces a certain
amount of area compression. This is inevitable because the region
has a large area relative to its circumference, and consequently any
embedding must introduce some distortion in edge lengths. The
harmonic map tends to minimize such distortion while maintaining
the embedding property and attempting to preserve aspect ratios of
triangles.

Harmonic maps can be visualized as follows. Imagine D to be
composed of elastic, triangular rubber sheets sewn together along
their edges. Stretch the boundary of D over the boundary of the
polygon P according to the map g. The harmonic map minimizes
the total energy Eharm[h] of this configuration of rubber sheets.

Rather than constructing the harmonic map directly, we compute
a piecewise linear approximation. Assume that n vertices v1� � � � � vn,
called corners, have been selected on the boundary �D of D (see
Figure 2), and (for technical reasons) assume that the degree of each
of the remaining boundary vertices is at least 3.

We choose the polygon P by mapping the corners of D onto the
vertices of an n-gon inR2. The vertices of the n-gon are positioned
on a circle such that the sides subtend angles proportional to the arc
lengths of the boundary segments of D joining the corresponding
corners. We then define g to be the piecewise linear map that sends
the corners of �D to the vertices of P, and is a homothety (i.e. an
isometry up to a constant factor) between each boundary segment
of D and the corresponding side of P (Figure 2).

(a) Original mesh tile (b) Harmonic embedding

Figure 2: The harmonic map for the head of a cat. The neck of
the cat is mapped onto the boundary of the polygon. The “corner”
vertices (thoses sent to vertices of the polygon) are indicated by
small balls.

Now suppose that h is any piecewise linear map that agrees with
g on the boundary. It is therefore uniquely determined by its values
h(i) at the vertices of D. By explicitly integrating the functional
Eharm over each face, one finds that Eharm can be reinterpreted as the
energy of a configuration of springs with one spring placed along
each edge of D:

Eharm[h] = 1�2
X

fi�jg�Edges(D)

�i�jkh(i) � h(j)k2 � (1)

where the spring constants �i�j are computed as follows: For each
edge fi� jg, let Li�j denote its length as measured in the initial mesh
D, and for each face fi� j� kg, let Areai�j�k denote its area, again as
measured in D. Each interior edge fi� jg is incident to two faces,
say fi� j� k1g and fi� j� k2g. Then

�i�j =
�

L2
i�k1

+ L2
j�k1

� L2
i�j

�
�Areai�j�k1 +�

L2
i�k2

+ L2
j�k2

� L2
i�j

�
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The formula for spring constants associated to boundary edges has
only one term.

Although the spring constants �i�j can assume negative values,
the function (1) is positive definite, and its unique minimum can be
found by solving a sparse linear least-squares problem for the values
h(i). In contrast to the harmonic map itself, its piecewise linear
approximation is not always an embedding. In our experience,
this problem occurs extremely rarely (3 times in the roughly 1000
harmonic maps we computed). In these cases we use uniform spring
constants.

For the remainder of this paper we refer to the unique piecewise
linear function minimizing (1) as a harmonic map, although strictly
speaking it is only an approximation.

Others have developed similar approaches to embedding disk-
like regions. One such approach, described by Kent et al. [9],
is also based on minimizing the energy of a network of springs.
They choose spring constants to be either all equal or inversely
proportional to edge lengths. Maillot et al. [12] introduced another
functional, also based on elasticity theory.

Figure 3 illustrates the behavior of the various embedding
schemes in a simple example where the region D (see Figure 3(a)) is
a triangulation of a planar polygon P and g : �D � P. is the identity.
The harmonic map (Figure 3(b)) is the identity map and therefore
has no metric distortion. The method of Kent et al. with either
choice of spring constants produces considerable metric distortion
(Figure 3(c) and (d)).



Figure 3: Comparison of various “spring embeddings”. From left
to right: (a) Original mesh; (b) Harmonic map and embedding
of Maillot et al. with � = 1; (c) �i�j = 1; (d) �i�j = 1�Li�j; (e)
Embedding of Maillot et al. with � = 1�2.

The mathematical properties of the functional proposed by Mail-
lot et al. are not entirely clear. In particular, the smooth theory to
which it is an approximation does not yield planar embeddings of
geometrically complex regions. This led them to introduce a user-
specified tuning parameter �. In the example of Figure 3, the choice
� = 1 also produces the identity map, whereas the choice � = 1�2
leads to small distortion (see Figure 3(e)). The method of Maillot et
al. appears produce results whose quality is comparable to ours (for
appropriately chosen �). However, their method requires non-linear
optimization, whereas our method requires only the solution of a
sparse linear least-squares problem.

5 Partitioning
Our partitioning scheme is based on the concepts of Voronoi di-
agrams and Delaunay triangulations. Let us first see how these
concepts could be used to partition a dense triangulation of a pla-
nar region into a small number of large triangles. We could begin
by selecting a set of relatively uniformly distributed vertices of the
dense triangulation, and then compute the Delaunay triangulation
for the selected vertices. One method for computing the Delaunay
triangulation for a set of sites in the plane is to first construct the
Voronoi diagram. Its polyhedral dual is the Delaunay triangulation
if Voronoi tiles meet three at a corner.

By analogy, our approach is to first partition the faces of M into
a set of Voronoi-like tiles �i using a discrete approximation of the
Voronoi diagram as described in Section 5.1. Unlike typical uses
of Voronoi diagrams, we do not know the sites a priori — they are
determined dynamically as the Voronoi diagram is constructed.

We then construct the dual to the Voronoi diagram, resulting in a
Delaunay-like partition of M into triangular regions Ti, as described
in Section 5.2.

5.1 Constructing the Voronoi diagram

As mentioned above, we use a discrete version of the Voronoi di-
agram to partition M into a set of Voronoi-like tiles. An efficient
algorithm for constructing true Voronoi diagrams on the surface of
a mesh has been developed by Mount [15], but it is rather difficult
to implement, and is unnecessary for our purposes.

We first describe an algorithm for computing tiles �1� ���� �s given
a set of sites logically positioned at the centroids of the site faces
S = ff1� � � � � fsg. We then present an algorithm for selecting a set
S of site faces for which the induced Voronoi diagram is dual to
a triangulation. The results of applying the Voronoi algorithm is
shown in Color Plate 1(b).

Constructing the Voronoi diagram for a given set of site faces
A Voronoi tile �i consists of all faces for which the closest site face
is fi. Our measure of distance between faces is an approximation of
geodesic distance over the surface. It is defined by constructing a
dual graph to the mesh: the nodes of the graph correspond to faces
of M, and the edges of the graph connect nodes corresponding to

adjacent faces. We set the cost of edges in this dual graph to be the
distance between centroids of the corresponding faces. The distance
between two faces is defined as length of the shortest path in this
dual graph.

Constructing the Voronoi diagram is a multi-source shortest path
problem in the dual graph, which we solve using a variant of Di-
jkstra’s algorithm [1]. The algorithm simultaneously grows the
Voronoi tiles from their site faces until they cover M.

Selecting the site faces In this section we describe an algorithm
for selecting a set S of site faces such that the induced Voronoi
diagram, computed as above, is dual to a triangulation. Although
our algorithm for selecting such site faces can be applied to any
mesh M, let us assume for the moment that M does not possess
boundaries. With this assumption, the Voronoi diagram must satisfy
the following conditions to be dual to a triangulation:

1. tiles must be homeomorphic to disks;

2. no pair of tiles may share more than one cut (a cut is a contigu-
ous set of edges of M along which a pair of tiles touch);

3. no more than three tiles can meet at any vertex.

The algorithm begins by initializing S with a single randomly
chosen site face. In the outer loop we then incrementally add faces
to S until the induced tiling satisfies conditions (1) through (3) above.

In the inner loop (tile growth), tiles associated with the faces in
S are grown until either they cover M, in which case tile growth
terminates, or until condition (1) is violated. Violation of condition
(1) can be detected by examining only the neighborhood of the most
recently added face. If condition (1) is violated, this face is added
to S and tile growth is resumed.

When tile growth is complete, conditions (2) and (3) are checked.
If condition (2) is violated, a face along one of the offending shared
cuts is selected as a new site face. If condition (3) is violated, one of
the faces adjacent to the offending vertex is selected as a site. If all
adjacent faces already are sites, the Voronoi algorithm fails. This
has never happened in any of the examples we have run. If it were
to happen, we would simply use the original mesh as the base mesh.

To accommodate boundaries, we introduce a single fictitious
Voronoi tile, logically outside of M, that touches each of the bound-
aries of M. Conditions (1) through (3) can then be applied without
change. To ensure that the Delaunay-like triangulation covers M,
we require that boundary tiles (those adjacent to the fictitious tile)
have sites on the boundary of M. This issue is addressed again in the
next section. To achieve this requirement, the algorithm adds a new
boundary site face whenever an interior tile touches a boundary. As
before, when tile growth stops, conditions (2) and (3) are checked,
and if violated, appropriate new sites are added.

It sometimes happens that tiles have adjacent short cuts, a situ-
ation that leads to Delaunay-like triangles with poor aspect ratios,
and hence to poor compression rates. We therefore add to the list
of conditions one that disallows such tiles. Adjacent cuts of a tile
are deemed short if the sum of their lengths is less than 10% of the
length of the boundary of the tile. When an offending pair of cuts
is found, one of the faces they share is added as a new site.

Properties of the Voronoi algorithm The time complexity of the
Voronoi algorithm depends on the number s of sites that are needed,
for which there is no general formula. For a fixed set of s sites, the
Voronoi tiles can be constructed using an s-source version of Dijk-
stra’s algorithm. Like the ordinary single source Dijkstra algorithm,
the s-source version can be implemented efficiently (O(n log n) time)
using a priority queue, where the priority of a face is the distance to
the nearest site.
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Figure 4: Construction of initial Delaunay paths on M.
.

Naively rerunning Dijkstra’s algorithm from scratch each time a
new site face is added would require O(s n log n) time. However, the
algorithm can be sped up significantly by incrementally updating
the priority queue as new sites are added to S.

Finally, because our site selection algorithm uses a greedy search,
it cannot be expected to produce a minimal set of sites.

5.2 Constructing the Delaunay triangulation

The partition of M into Voronoi tiles obtained in the previous section
has the property that its dual graph consists of 3-sided faces. How-
ever, mapping these 3-sided faces onto the surface is a non-trivial
problem. The obvious approach of connecting pairs of Voronoi sites
by the shortest paths on the surface — as is done in constructing the
Delaunay triangulation in the plane — is not guaranteed to produce
a valid triangulation for arbitrary manifolds since the resulting paths
can cross. Moreover, finding the shortest paths between two points
on a mesh is itself a difficult problem [14]. Our alternative uses
harmonic maps twice: once to produce an initial Delaunay triangu-
lation, and then again to improve the triangulation by straightening
its edges.

Constructing an initial Delaunay triangulation. The first step
is to compute the harmonic map hi that carries each Voronoi tile
�i into an appropriate planar polygon Pi, as described in Section 4.
The inverse of hi provides a parametrization of �i over Pi which we
use to construct paths lying on M.

Let �i and �j denote two adjacent interior Voronoi tiles as illus-
trated in Figure 4. The path of the initial Delaunay triangulation
joining these tiles is constructed as follows: the cut shared by the
tiles is mapped to an edge ei�j of Pi by the harmonic map hi; sim-
ilarly, the cut is mapped to an edge ej�i of Pj by hj (see Figure 4).
We construct a line Li�j from the centroid of Pi to the midpoint of
ei�j, and a line Lj�i from the centroid of Pj to the midpoint of ej�i.
The path is formed by mapping these lines onto M using the inverse
harmonic maps. That is, the path is obtained by joining h�1

i (Li�j)
and h�1

j (Lj�i).1

The construction of a path between an interior tile �i and a bound-
ary tile �k is slightly different, as indicated in Figure 4. In order
for the Delaunay triangulation to cover M, it is necessary to con-
struct paths from the boundary. (The site selection algorithm of
Section 5.1 was designed with this goal in mind in that it guarantees

1Note that this path does not connect the site faces as one might expect.
We have found that the method described here produces more uniform
triangulations than were obtained by connecting site faces.

that boundary tiles have site faces on the boundary.) We therefore
select a boundary vertex vk of the site face fk, and construct Lk�i as the
line from hk(vk) to the midpoint of ek�i. The line Li�k is constructed
as before from the centroid of Pi to the midpoint of ei�k.

Finally, two adjacent boundary tiles �k and �� are connected by
the path along the boundary between vk and v�.

The edges of the paths thus constructed are generally not edges
of M. For convenience in constructing the parametrizations of
Section 6, we refine M to include the path edges.

Straightening the Delaunay edges. The edges of the initial
Delaunay triangles constructed in the first step can have kinks
where they cross the border between two Voronoi tiles (see Color
Plate 1(c)). To straighten a Delaunay edge, we construct a sec-
ond harmonic map from the union of the two Delaunay triangles
adjacent to the edge into a planar quadrilateral, as described in Sec-
tion 4. We then replace the edge by the image of the corresponding
diagonal of the quadrilateral under the inverse harmonic map. This
straightening step is applied to all Delaunay edges in an arbitrary
order, resulting in a final triangulation T1� ���� Tr. Color Plate 1(d)
shows the result of straightening the edges in Color Plate 1(c).

6 Parametrization
Identifying each of the m vertices or nodes of the triangulation
T1� ���� Tr with a canonical basis vector ofRm defines the base com-
plex K0 � R

m, with a face corresponding to each of the r trian-
gular regions. The goal of this section is to construct a continuous
parametrization � : K0 � M of the initial mesh over K0. We map
each triangle Ti onto a triangular region of the plane, again using
harmonic maps described in Section 4. We then affinely map the tri-
angular region onto the corresponding face Fi of the base complex.
The composition of the two maps is an embedding, and therefore its
inverse �i defines a parametrization of Ti over Fi. By construction,
the maps �i agree on shared boundaries, and thus the �i collectively
define a continuous parametrization � of M over K0.

7 Resampling

In this section, we describe a method for producing a mesh MJ with
subdivision connectivity from the parametrization � : K0 � M
constructed in Section 6. We also show how to determine the
subdivision level J so that MJ and M differ by no more than a
specified remeshing tolerance �1.

For a given value of J, we first produce a triangulation KJ of
K0 by performing J recursive 4-to-1 splits of the faces of K0. We
then approximate � by a function �J defined as the piecewise linear
interpolant to � on KJ; that is, �J is such that �J(xJ

i ) = �(xJ
i ), where

the points xJ
i (called knots) denote the vertices of KJ .

The simplest strategy for performing a 4-to-1 split of a face is
to position the split points at midpoints of edges, as illustrated
in Figure 1. We refer to this process as parametrically uniform
resampling since the faces of KJ are of equal size. Alternatively,
we could attempt to place the knots so that the images of triangles
of KJ , that is, the triangles of the remesh MJ , are of equal size. We
refer to this as geometrically uniform resampling.

As one of our fundamental objectives is high compression rate,
we evaluate the performance of a resampling strategy by the number
of wavelet coefficients needed for a given compression tolerance �2.
This number is governed by at least two competing factors:

1. As mentioned in Section 3, the coordinate functions of � should
be as slowly varying as possible; this is largely achieved
by the distortion minimizing property of the harmonic map
parametrizations.



�2 Geom. Uniform Hybrid Param. Uniform
0.5% (2679) [5422] (1768) [3562] (2224) [4502]
1.0% (1100) [2180] (795) [1591] (1044) [2079]
2.0% (416) [809] (385) [758] (455) [881]
5.0% (112) [223] (130) [245] (143) [302]

Table 1: Performance of the three sampling strategies on the cat
model. Parentheses denote the number of significant wavelet coef-
ficients; square brackets denote the number of triangles. All exam-
ples were run using �1 = 1�0�. Errors are measured as a percentage
of the object’s diameter.

2. The triangles of MJ should be of roughly uniform size. Louns-
bery et al. define wavelets so that the magnitude of a wavelet
coefficient is a measure of the “unweighted” least-squares error
that would be incurred if the coefficient were set to zero. By
unweighted we mean that deviations on large triangles of MJ

are counted no more heavily than deviations on small trian-
gles. If MJ has triangles of roughly uniform size, magnitudes
of wavelet coefficients are better measures of geometric error.

The strategy that has performed best in our experiments is a
hybrid strategy using geometrically uniform sampling in the first
few splitting steps (the first three steps in all our examples), and
parametrically uniform sampling in subsequent steps. Intuitively,
this strategy does a reasonable job of uniformly distributing the
triangles on a coarse scale, while still remaining faithful to the
harmonic parametrization on smaller scales.

This intuition is supported by numerical results. Our tests have
shown that hybrid resampling typically results in wavelet expan-
sions with fewer significant coefficients than either parametrically
uniform or geometrically uniform resampling. Moreover, the num-
ber of subdivisions J necessary to satisfy a remeshing tolerance �1
is often smaller and hence the remesh is often faster to compute
and requires less storage. Table 1 presents the results of an ex-
periment for the cat mesh (shown in Color Plate 2(d)) for various
wavelet compression tolerances �2. Notice that hybrid resampling
is particularly advantageous for small tolerances.

7.1 Geometrically uniform resampling

The task of determining new knots xj
i � K0 so that the triangles

generated are roughly uniform in size is an optimization problem
whose solution we approximate using the following recursive greedy
algorithm.

In the parametrically uniform resampling process the knot xj
i at

level j is simply computed as midpoint of the edge of the two (neigh-
boring) knots xj�1

n1(i) and xj�1
n2(i) at level j � 1. Instead of performing

uniform subdivision, we define

x
j
i = (1 � 	j

i) � x
j�1
n1(i) + 	j

i � x
j�1
n2(i) with 	j

i � (0� 1)�

where the splitting parameter 	j
i is determined as follows: Split the

two faces adjacent to the edge from xj�1
n1(i) to xj�1

n2(i), as illustrated in

Figure 5. Our goal is to find 	j
i so that the regions Rj

i = �j
i�1 ��j

i�3

and Sj
i = �j

i�2 ��j
i�4 map to regions of equal area on M.

In the current implementation we have simplified the area com-
putations by using a discrete approximation: We scatter a roughly
uniform collection of points on the faces of M, then map these sam-
ple points back to K0 using ��1 (��1 is the harmonic map, so it is
already known). We then use binary search to compute the param-
eter 	j

i so that the number of sampled points in the regions Rj
i and Sj

i

are nearly equal.

x
j�1
n1(i)

x
j�1
n2(i)

x
j
i

�i�1

�i�2

�i�3

�i�4

Figure 5: Computing the new knot xj
i

7.2 Bounding the remeshing error

In this section we describe how to determine J such that the remesh
MJ and the initial mesh M deviate by no more than a remeshing
tolerance �1 in an L� sense. That is, we seek to find the smallest J
such that

max
x�K0

k�(x)� �J(x)k � �1�

Our strategy for determining J will be to perform successive steps
of 4-to-1 splitting until the error bound is satisfied.

To bound the error for a given value of J, let E(x) := �(x) �
�J(x) denote the (vector-valued) error function. First, note that the
preimages of the triangles of M under � form a partition 
 of K0,
and that � is a linear function on each triangle of 
. Next, recall
that �J is linear within each of the triangles of the partition KJ of
K0. Thus, E(x), the difference between the two, is linear within
each cell of the union partition 
J = 
 � KJ . The squared norm of
E(x) is therefore quadratic and convex up over each cell of 
J , and
so must achieve is maximum value at a vertex of 
J .

The L� error for a given value of J can therefore easily be
determined by evaluating E(x) at the vertices of 
J . Using a local
marching technique such as the one in Kent et al. [9], these vertices
can be found in time proportional to the total number of vertices in

 and KJ .

8 Results
Color Plates 1 and 2 illustrate the steps of the algorithm and present
examples of its applications.

Color Plate 1(a)-1(h) demonstrate the complete process of mul-
tiresolution analysis for a mesh of genus 3. We first partition the
original mesh of Color Plate 1(a) into Voronoi-like tiles shown
in Color Plate 1(b). We then construct the initial Delaunay-like
triangulation (Color Plate 1(c)), and straighten its edges (Color
Plate 1(d)). The Delaunay triangles define a simple base complex
that serves as the domain for the parametrization of the mesh. Re-
sampling this parametrization using the hybrid strategy described in
Section 7 with a remeshing tolerance of �1 = 0�75 � required J = 4
subdivision steps and produced the remesh shown in Color Plate 1(f)
consisting of 17,920 triangles. The lowest resolution approxima-
tion, shown in Color Plate 1(e), is a piecewise linear embedding of
the base complex. Color Plates 1(g) and 1(h) show more detailed
approximations using, respectively, 366 and 2,614 faces.

Table 2 summarizes the remeshing process for a variety of other
meshes. (All computing times were measured on a SGI Onyx
Reality Engine 2 with 256MB of memory.) Note that the number of
Voronoi tiles is influenced more by the geometry of the model than
by the number of faces of M.

Approximating the dinosaur and the phone with low tolerances
would require high subdivision levels. This is due to the presence
of jagged boundaries which can only be well approximated using a
large number of subdivisions.

Computing times are strongly dependent on the ratio of the num-



object # faces # Voronoi # Delaunay remesh. subdiv. time
of M tiles �i triangles Ti tol. �1 level J mins

holes3 11,776 31 70 0.5 % 4 4.6
bunny 69,473 88 162 0.5 % 5 33.5
cat 698 7 9 1.0 % 6 0.8
dino 103,713 117 229 1.0 % 5 39.3
phone 165,896 69 132 2.5 % 5 346.6

Table 2: Summary of results of the remeshing algorithm

Color object # faces compr. # wavelet # faces time
Plate of MJ tol. �2 coeff. mins

1(g) holes3 17,920 4.0 % 179 366 0.9
1(h) holes3 17,920 0.5 % 1,298 2,614 1.0
2(a) bunny 165,888 0.07 % 18,636 37,598 4.5
2(b) bunny 165,888 0.7 % 2,268 4,639 3.7
2(c) bunny 165,888 1.5 % 952 1,921 3.5
2(i) dino 234,496 0.5 % 2,329 4,725 5.0
2(l) phone 135,168 0.1 % 7,920 16,451 3.3

Table 3: Summary of results of the algorithm of Lounsbery et al.

ber of faces of M to the number of Delaunay triangles, since the bot-
tleneck of the algorithm, the harmonic map computation, requires
solving sparse least-squares problems whose time complexity is
proportional to the square of the number of vertices in the triangles.

Table 3 summarizes the results of wavelet compression applied to
remeshed models. Each line of the table gives the number of faces of
the remesh, the compression tolerance �2 used in the wavelet com-
pression method described in Appendix A.2, the number of wavelet
coefficients, the number of faces of the resulting approximation,
and the time required for filterbank analysis and synthesis. The
total deviation between the compressed model and the original is
bounded by � = �1 + �2, the sum of the remeshing tolerance and the
compression tolerance. Note that for storage and transmission pur-
poses, the relevant performance measure is the number of wavelet
coefficients rather than the number of faces, since only the wavelet
coefficients (and their indices) have to be stored or transmitted.

Color Plates 1(k)-1(l) illustrate level-of-detail control. The origi-
nal model (Color Plates 1(f) and 1(k)) was created from laser range
data using the mesh zippering algorithm of Turk and Levoy [21].
Color Plates 1(k) and 1(l) show views of the original model and
of lower resolution approximations from three different distances.
Color Plates 2(a)-2(c) are close-ups of the approximations in Color
Plate 2(l). Note the enormous reduction in the number of triangles
when the multiresolution approximations are viewed from afar.

Color Plates 2(d)-(f) illustrate multiresolution editing. Color
Plate 2(e) shows a large-scale modification caused by changing
a wavelet coefficient at the coarsest level, whereas Color Plate 2(f)
corresponds to changing two coefficients at an intermediate level-
of-detail.

Color Plates 2(g)-(l) show the application of remeshing and mul-
tiresolution analysis to two additional meshes.

9 Conclusion
We have described an algorithm for solving the remeshing problem,
that is, the problem of approximating an arbitrary mesh by a mesh
with subdivision connectivity. Combined with the previous work of
Lounsbery et al., our remeshing algorithm allows multiresolution
analysis to be applied to arbitrary meshes. Multiresolution rep-
resentations support efficient storage, rendering, transmission, and
editing of complex meshes in a simple, unified, and theoretically

sound way.

We have applied our remeshing algorithm and multiresolution
analysis to complicated meshes consisting of more than 100,000
triangles. Examples of compression, level-of-detail rendering, and
editing are shown in the Color Plates.

The key ingredient of our remeshing procedure — and the prin-
cipal technical contribution of the paper — is the construction of a
continuous parametrization of an arbitrary mesh over a simple do-
main mesh. Parametrizing complex shapes over simple domains is
a fundamental problem in numerous applications, including texture
mapping and the approximation of meshes by NURBS patches. We
therefore expect that our parametrization algorithm will have uses
outside of multiresolution analysis. We intend to explore these uses
in future work.
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A Multiresolution Analysis of Subdivi-
sion Meshes

As mentioned in Section 1, the main idea of multiresolution analy-
sis is to decompose a function into a low resolution part and a set
of correction or “detail” terms at increasing resolutions. Multires-
olution analysis was first formalized by Mallat [13] for functions
defined on Rn. Lounsbery [10] and Lounsbery et al. [11] have
recently extended the notion of multiresolution analysis to func-
tions defined on base complexes of arbitrary topological type. Their
results can be used to construct multiresolution representations of
meshes with subdivision connectivity. The purpose of this appendix
is to summarize their basic results and algorithms at a high level.

A.1 Background

The two basic ingredients of multiresolution analysis are a sequence
of nested linear function spaces and an inner product. Lounsbery et
al. use a sequence of spaces V0 � V1 � � � � associated with the
base complex. To describe meshes, the approximation spaces Vj

consist of piecewise linear functions; specifically, Vj is the space
of continuous piecewise linear functions over a partition Kj of K0

created by performing j recursive steps of 4-to-1 splitting to the
faces of K0, as shown in Figure 1. As j increases, the triangulation
Kj becomes more dense, and so the functions in Vj are better able
to model arbitrary continuous functions on K0. The inner product
used by Lounsbery et al. is the standard inner product defined as

hf � gi :=

Z
x�K0

f (x)g(x)dx

where dx is the differential area of K0 embedded inRm, so that all
faces have unit area.

The inner product is used to define the following orthogonal
complement spaces, also called wavelet spaces,

Wj := ff � Vj+1 j hf � gi = 0 	g � Vjg�

Intuitively, Wj captures the detail that is missed when a function in
Vj+1 is approximated by a function in Vj.

Basis functions for Vj are called scaling functions. In the piece-
wise linear case, particularly simple scaling functions for Vj are the
“hat functions” on Kj: the i-th hat function �j

i � Vj is the unique
function in Vj that is one at xj

i and zero at all other knots of Kj.

A wavelet �k
i (x) is a basis function for one of the wavelet spaces

Wk . Lounsbery et al. [11] give constructions for wavelet bases on
arbitrary base complexes K0. A wavelet basis for Vj consists of a
basis for V0 together with bases for the wavelet spaces W0� ����Wj�1.

The parametrization �J � VJ for Vj can be expanded in the hat
function basis as

�J(x) =
X

i

vJ
i �

J
i � x � K0 (2)

where vJ
i denote the vertex positions of MJ . A multiresolution

representation of �J refers to its expansion in a wavelet basis

�J(x) =
X

i

v0
i �

0
i (x) +

J�1X
j=0

X
i

wj
i�

j
i(x)� x � K0� (3)

where wj
i denote the wavelet coefficients.

An algorithm known as filterbank analysis can be used to con-
vert between the hat function expansion and the multiresolution
representation. The geometric interpretation of filterbank analysis
is shown in Figure 6. The full detail model, described by �J(x)
is successively decomposed into a lower resolution approximation
together with a collection of coefficients that multiply the wavelets.
The result is a simple base mesh together with wavelet coefficients
at various levels of detail. The operators A and B in Figure 6 refer
to sparse matrices whose entries are given by Lounsbery et al.. The
filterbank analysis has an inverse process called filterbank synthe-
sis that recovers the full resolution model from its multiresolution
representation.

A.2 L� Wavelet compression

The L� error caused by wavelet compression is the L� norm of
the difference function (x) = �J(x) � ��J(x), where ��J(x) denotes
the compressed approximation to �J(x). This difference function is
simply the sum of the wavelet terms that have been removed from
�J(x). Since (x) is a piecewise linear function on KJ , its L� norm
can be determined as in Section 7.2 by recording its values at the
vertices of KJ .

Compression in principle proceeds by considering the wavelet
coefficients in order of increasing magnitude. A coefficient is re-
moved if doing so does not cause the L� norm of (x) to exceed
�2. If removal of a coefficient would violate the error tolerance,
the coefficient is retained and the next coefficient is examined. The
procedure terminates when all coefficients have been considered for
removal. The examples presented in this paper have used a con-
servative approximation to this approach where a bound on the L�

norm of (x) is maintained, rather than maintaining (x) itself; we
plan to implement the principled approach in the near future.



(a) Original mesh M (11,776 faces) (b) Voronoi diagram (31 tiles) (c) Initial Delaunay triangulation (70 tri.)

(d) Straightened Delaunay triangulation (e) Base mesh (70 faces) (f) Remesh MJ (J = 4; 17,920 faces)

(g) Approx. (� = 4�5�; 366 faces) (h) Approx. (� = 1�0�; 2,614 faces) (i) Delaunay triangulation (162 tri.)

(j) Base mesh (162 faces) (k) Original mesh (69,473 faces) (l) LOD using multiresolution approx.
Color Plate 1: (a-g) Example of partition, parameterization, resampling, and approximation of a mesh using multiresolution
analysis; (h-k) Level-of-detail approximations of a dense mesh.



(a) Approx. (� = 0�57�; 37,598 faces) (b) Approx. (� = 1�2�; 4,639 faces) (c) Approx. (� = 2�0�; 1,921 faces)

(d) Original mesh (698 faces) (e) Surface editing at a coarse level (f) Surface editing at a finer level

(g) Original mesh (103,713 faces) (h) Base mesh (229 faces) (i) Approx. (� = 1�5�; 4,725 faces)

(j) Original mesh (165,896 faces) (k) Base mesh (132 faces) (l) Approx. (� = 2�6�; 16,451 faces)
Color Plate 2: (a-c) Multiresolution approximations used in Color Plate 1(l); (d-f) Example of multiresolution surface editing;
(g-l) More results of multiresolution surface approximation.
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