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Abstract

Scanned performances are commonly represented in virtual envi-
ronments as sequences of textured triangle meshes. Detailed shapes
deforming over time benefit from meshes with dynamically evolv-
ing connectivity. We analyze these unstructured mesh sequences to
automatically synthesize motion graphs with new smooth transitions
between compatible poses and actions. Such motion graphs enable
natural periodic motions, stochastic playback, and user-directed
animations. The main challenge of unstructured sequences is that
the meshes differ not only in connectivity but also in alignment,
shape, and texture. We introduce new geometry processing tech-
niques to address these problems and demonstrate visually seamless
transitions on high-quality captures.

Keywords: shape similarity, seamless transitions, shape morphing,
looping, stochastic motion, video textures, Markov chain

Concepts: •Computing methodologies→ Computer graphics;

1 Introduction

Immersive virtual environments benefit from dynamic content
scanned from real-world performances. In such environments, the
viewer location is not known a priori and can change rapidly, so
the content must be renderable from arbitrary viewpoints. Several
techniques achieve such free-viewpoint video, as reviewed in the
next section. Our work focuses on approaches that reconstruct a
textured triangle mesh at each time frame. The sequence of meshes
may have arbitrarily changing connectivity.

The input mesh sequence may be thought of as a directed path
graph, in which each node corresponds to a mesh pose, and there
is an edge between each successive pair of meshes. Our goal is
to extend this to a more general motion graph [Kovar et al. 2002],
with additional edges that correspond to new, synthesized motion
transitions between similar frames (Figure 1). Related work on
skeletal animation [Kovar et al. 2002; Heck and Gleicher 2007] and
temporally coherent meshes [Casas et al. 2012] has shown that
motion graphs enable several useful scenarios:

Periodic motions: The captured sequence may contain motions
that are naturally periodic (e.g., walking or running), so graph
cycles should correspond to seamless looping of such motions.

Stochastic motion: The graph can be randomly traversed to
synthesize infinite motion, while maintaining smooth transitions,
avoiding obvious repetition, and maximizing content variety.
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Figure 1: Example of a synthesized mesh sequence introduced to
smoothly transition between similar poses. Each mesh corresponds
to a colored node on the transition arc above the timeline.

User-directed action: During motion playback, the user can inter-
actively specify a target frame (e.g., from a walking/running/jump-
ing sequence), and a path is found within the graph to quickly
transition to that frame, again while preserving visual smoothness.

Our contribution is to extend these ideas to sequences of unstructured
textured meshes [Bojsen-Hansen et al. 2012]. Specifically, we
address the following challenges:

• Compute a similarity matrix to identify temporal windows with
similar poses and use it to select new transitions to introduce.

• For each transition, track a template through the frames so that
all frames share the same mesh connectivity.

• Compute a sequence of textured meshes that achieves a smooth
visual transition across the two temporal windows.

• Define transition probabilities that allow stochastic traversal of
the graph such that the steady-state probabilities of visiting nodes
are as uniform as possible.

The main difficulty lies in the construction of smooth transitions,
which requires morphing of the mesh geometry together with ghost-
free texture interpolation. This is challenging because even in natural
periodic motion, frames are often misaligned, the mesh shapes
deform (e.g., arm positions, cloth folds), and reconstructed texture
features change (e.g., facial expressions). These differences become
more significant when transitioning between unrelated motions.

2 Related work

Free-viewpoint video There are numerous techniques for record-
ing a live performance using multiple cameras such that it may later
be experienced from a full 360-degree range of inward-looking view-
points [e.g., Kanade et al. 1997; Carranza et al. 2003; Vlasic et al.
2009; Bojsen-Hansen et al. 2012; Casas et al. 2014; Zitnick et al.
2004; Zollhöfer et al. 2014; Huang et al. 2014; Collet et al. 2015].
Most techniques reconstruct an explicit surface representation (tri-
angle mesh), which is then shaded using a merged texture atlas or a
view-dependent combination of the original videos.
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These techniques can be broadly categorized according to whether
they reconstruct a new surface at each time frame (e.g., using
shape from silhouettes or multiview stereo), deform a canonical
or precomputed geometric model (e.g., body mesh) to fit each frame,
or use a hybrid combination of per-frame reconstruction and inter-
frame tracking. Reusing the same keyframe mesh connectivity over
several consecutive frames (or even the entire sequence) can improve
robustness and encoding efficiency. On the other hand, allowing
dynamic mesh connectivity offers greater flexibility in capturing
general scenes, e.g., with free-flowing clothing or interacting objects.

Our work supports input with arbitrarily changing mesh connectivity
and is therefore broadly applicable. We demonstrate it using datasets
from both [Starck and Hilton 2007] and [Collet et al. 2015].

Motion graphs Given a skeletal motion capture sequence, motion
graphs [Arikan and Forsyth 2002; Kovar et al. 2002; Lee et al.
2002] are constructed by identifying temporal windows of frames
with similar pose and constructing smooth transitions between them,
e.g., by spherical linear interpolation of joint rotations. These graphs
are used to synthesize new motion paths that closely follow given
constraint curves or respond to interactive controls.

Several papers extend motion graphs to shape sequences.
Starck et al. [2005] construct motion graphs over human shapes
by representing these as geometry images using spherical parameter-
izations. Huang et al. [2009] identify pairs of similar mesh frames
and transition from one action to another at the matching frames, but
without geometry or texture interpolation. The work of Casas et al.
[2012] is quite related to ours in that it also constructs motion graphs
over input mesh sequences and defines smooth transitions between
different actions. Huang et al. [2015] extend this framework to en-
able the use of separately captured skeletal motion data to drive the
character animation. Volino et al. [2015] enable interactive anima-
tion control in a web-based browser.

There exists a key distinction from our work though: prior techniques
for creating smooth transitions assume that all input meshes are
well-registered and share the same connectivity. This is a strong
assumption to make, as in practice it is difficult to register a static
template to all scanned frames [Bojsen-Hansen et al. 2012] (due to
fast motion, incompatible topology, flexible and free-form materials,
etc.). In contrast, we make no such assumption. We explicitly
construct locally consistent connectivity for the transition frames.
This enables a broader range of input from more complex scenarios.

Image-based transitions Xu et al. [2011] achieve image-based
synthesis of realistic human video animations. The surface geometry
is used to guide the warping of 2D images into the output frame and
is not itself rendered into the final output. Changing the viewpoint in
this system requires re-running the matching/deformation pipeline.
Several techniques address texture misalignment by warping 2D
screen-space renderings using image-based optical flow at runtime
[Eisemann et al. 2008; Casas et al. 2014, 2015]. The images are
rendered, warped according to the flow field, and blended for a
specific viewpoint. Casas et al. [2015] partially avoid costly runtime
computations by precomputing the image-based optical flow from
multiple viewpoints. In contrast, we compute optical flow directly
over the triangle mesh, storing the final corrected texture into an
atlas and avoiding view-dependent runtime computations.

3 Overview

The input F = {(F0, I0), . . . , (Fn−1, In−1)} consists of a
sequence of textured mesh frames, where each frame is a triangle
mesh Fi = (Ki, Vi) with connectivity Ki and vertex positions Vi,
and Ii is the associated texture. A motion graph G = (F , E) is a
directed graph in which each node corresponds to a frame and each
edge e ∈ E ⊆ F×F represents the possible transition from one
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Figure 2: Illustration of the steps in our processing pipeline:
(a) compute the inter-window dissimilarity matrix D, (b) fit a fixed-
connectivity template to the frames of similar windows, (c) synthesize
the textured transition frames, and (d) assign transition probabilities
to the derived motion graph.



frame to another. Thus, for the initial sequence, the motion graph is
a directed path graph as there is an edge between two consecutive
frames. Note that the first frame F0 has no incoming edge, and the
last frame Fn−1 has no outgoing edge. Because this graph is acyclic,
it does not permit any repeating motion. And, because no node has
more than one outgoing edge, it only permits a single path.

Our goal is to augment this graph with a new set of motion
transitions. A simple scheme would be to successively identify a pair
of similar frames using a distance function D, e.g., to find a source
frame Fs and a target frame Ft, such that D(Fs, Ft−1) < ε and
D(Fs+1, Ft) < ε for some error threshold ε, and to simply augment
the motion graph with the new edge (Fs, Ft). However, as the
corresponding frames may come from different animation sequences,
this new transition can easily result in a visible discontinuity during
playback.

Instead, our approach is to find loosely matching windows Ws =
{Fs−k, . . . , Fs+k} and Wt = {Ft−k, . . . , Ft+k} and then deform
the windows by synthesizing new transition frames between Fs−k
and Ft+k. The transition window Ws→t consists of a short fixed-
size sequence of synthesized frames (Figure 3):

Ws→t = (F st−k, F
st
−k+1, . . . , F

st
k−1, F

st
k ),

where {F sti } are newly synthesized frames and F st−k ≈ Fs−k and
F stk ≈ Ft+k (with equivalence up to tessellation). This sequence
itself forms a path graph, and is merged with the motion graph.

After adding a set of transitions {W1, . . . ,Wl}, the new motion
graph contains the nodes F ∪ {FW1} ∪ . . . ∪ {FWl} and contains
the union of the original graph edges and all new transition paths.
We transform this graph into a Markov chain graph by assigning
transition probabilities to each node, such that a random walk visits
all nodes with approximately equal probability.

A visualization of our pipeline is shown in Figure 2 with the matrix
of dissimilarity measures shown in the top row, a candidate transition
pair in the second row, the synthesized transition in the third, and
the motion graph in the bottom.

The next sections discuss how to identify candidate pairs of similar
frames s, t (Section 4), how to choose and fit a single template
to the meshes in the source and target windows (Section 5), how
to interpolate between the source and target to obtain the new
synthesized window Ws→t (Section 6), and how to assign transition
probabilities on the graph edges so that the steady-state frequency of
visiting nodes during a random walk is close to uniform (Section 7).

4 Finding candidate transition windows

To identify potential transitions we search for pairs of frames Fs
and Ft, with the property that the window around Fs is similar to
the window around Ft. The use of a window also ensures that the
source and target surfaces have similar velocities.

This relates the problem of choosing transitions to the problem of
measuring shape similarity, a problem that has been well-studied in
the graphics literature with numerous shape descriptors proposed for
efficient retrieval [e.g., Shilane et al. 2004; Tangelder and Veltkamp
2007; Huang et al. 2010]. In our application the shape matching
is performed offline, allowing us to use techniques that are more
discriminating but also more expensive to compute.

In particular, we leverage the exhaustive search approach proposed
by Funkhouser et al. [2004], where a dissimilarity score between
two pairs of models is computed by first translating each model so
that its center of mass is aligned with the origin, and then searching
over all rotations about the origin for the one minimizing the sum-
of-squared distances between the shapes.
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Figure 3: Given two similar windows centered about frames
Fs and Ft in the input sequence, we construct two new mesh
sequences Ws→t and Wt→s which provide smooth transitions
between opposite endpoints of the two windows.

Letting χs and χt be the indicator functions of the two surfaces
and letting EDT2

s and EDT2
t be the (squared) Euclidean Distance

Transforms, this distance is expressed as:

Dst(R) = 〈EDT2
s, R(χt)〉+ 〈χs, R(EDT2

t )〉

with R(Φ) the rotation of Φ (i.e. R(Φ)(p) = Φ(R−1(p))).

Following the work of [Huang et al. 2009], we adapt this approach
in two ways. To ensure that we match the action around frames Fs
and Ft we compare local windows rather than individual frames.
And, since actions are defined in relation to the ground, we only
search for frames that are similar up to a rotation about the (vertical)
z-axis. This gives a windowed dissimilarity matrix D with entries:

dst = min
R∈SO(2)

k∑
i=−k

ω(k) ·Ds+k,t+k(R)

where the rotation R is taken from the group of rotations about the
z-axis and ω : [−k, k]→ R is a kernel, centered at zero, that gives
more weight to the matching score of frames that are closer to Fs
and Ft respectively. As in [Funkhouser et al. 2004], we perform the
matching efficiently using the Fast Fourier Transform, avoiding the
more expensive brute-force search used by [Huang et al. 2009].

Given the dissimilarity matrix we define a set of candidate transitions
by iteratively choosing pairs of frames that give low distance scores
(so that we are more likely to succeed in synthesizing a transition)
and are sufficiently far from previously chosen pairs (to avoid
creating many transitions between the same pairs of actions). As we
iterate the pair selection, we try to synthesize transitions (Section 5
and 6). If the synthesis fails, we discard the failed pair to allow for
the selection of other candidate transitions in the vicinity.

As shown in Figure 2 (second row), the windowed matching
generates candidate pairs that have similar action, while the
weighting kernel ensures that the center frames Fs and Ft are close.

Choice of descriptor We use the descriptor in [Funkhouser et al.
2004] because it is easy to compute, is efficient to match
using the FFT, and has been shown to retrieve models with
high precision. While other descriptors have been proposed for
matching dynamic meshes, there has been little work comparing
such descriptors. (Although Huang et al. [2010] show that their
volumetric shape histograms outperform the spherical harmonic
descriptor of [Kazhdan et al. 2003], the practical implications are
unclear for two reasons. First, the descriptor of [Kazhdan et al.
2003] has been shown to be less discriminating than the descriptor
of [Funkhouser et al. 2004] that we use. Second, [Huang et al.
2010] compare shape histograms with exhaustive search to the
spherical harmonic representation with rotation invariance. As
rotation invariance discards salient information, the diminished
performance of the spherical harmonic representation is expected
and it is unclear how the descriptors would compare if exhaustive
search were used for both.)



5 Tracking the windows consistently

Having found frames Fs and Ft with similar windows Ws =
{Fs−k, . . . , Fs+k} and Wt = {Ft−k, . . . , Ft+k}, our goal is
construct two new transition sequences: one from the beginning
of Ws to the end of Wt and the other from the beginning of Wt to
the end of Ws, as shown in Figure 3. (Note that Ws→t and Wt→s
do not correspond to opposite edges in the motion graph because
they are adjacent to different nodes.)

In this section, we describe the first phase of this processing – fitting
a tetrahedral template mesh to all frames in Ws and Wt, so that all
frames are tessellated with a common connectivity. In Section 6, we
use this shared tessellation to synthesize the new transition frames.

Pseudocode TrackTemplate outlines the steps of the fitting phase.
An initial surface template is chosen and extended to a volumetric
template. Then the template is propagated through (and across) the
frames in Ws and Wt to obtain the tracked windows W s and W t.

TrackTemplate( Ws , Wt , ε , ε , L )

1 Fa← SelectTemplate( Ws , Wt )
2 F a← Tetrahedralize( Fa )
3 Q← {a}
4 while Q 6= ∅
5 q← Pop( Q )
6 for r ∈ UnprocessedNeighbors( q )

7 F̃r ← PropagateSurface( ∂F q )

8 F̃r ← DetailTransfer( F̃r , Fr , ε , ε , L )

9 F r ← PropagateVolume( F q , F̃r )
10 Push( Q , r )

5.1 SelectTemplate

We select the connectivity from among the meshes in Ws and Wt,
and use the frame Fa which best satisfies the criteria proposed by
Collet et al. [2015] (in decreasing order of priority): more connected
components, lower genus, larger surface area.

5.2 Tetrahedralize

We tetrahedralize the interior of Fa using a constrained Delaunay
triangulation that introduces Steiner points and has area-edge ratio
bounded by 1.8 [Si 2015] to get the volumetric template F a.

5.3 UnprocessedNeighbors

Noting that adjacent poses in the source (respectively, target) have
similar geometries, we propagate the template within the source
(respectively, target) by registering tracked frames to their untracked
neighbors. Using the similarity of frames Fs and Ft, we propagate
from the source to the target (or vice versa in the case that Fa ∈Wt)
by registering F s to Ft (Figure 4).

5.4 PropagateSurface

We begin the tracking process by leveraging the similarity
between adjacent frames (and between Fs and Ft) and using the
implementation of non-rigid ICP described by Li et al. [2009] to
register the boundary of the tracked template, ∂F q , to the neighbor’s
geometry, Fr . The Hausdorff distance between ∂F q and Fr is
measured to determine whether the tracking is successful. In our
examples, we abort the transition synthesis when the Hausdorff
distance exceeds 10 cm.
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Figure 4: Tracking propagation order, starting from the heuristically
selected best frame Fa and propagating across the two windows Ws

and Wt at the identified most similar frames Fs and Ft. The end
result is a tracked mesh F for each frame F ∈ Ws ∪Wt, all with
the same connectivity as Fa.

5.5 DetailTransfer

Having performed ICP to coarsely register the template’s surface to
the input, we further deform the geometry of the template to better
match the input’s detail.

When the volumetric meshes have a consistent tessellation, local
coordinate frames are related and the differential coordinates
[Sorkine and Alexa 2007] of the input can be transferred to the
template [Casas et al. 2014]. As we do not assume that the input
and template meshes share a common tetrahedralization, such an
approach is not feasible. Instead, we use the surface normals (which
do not require relating local frames) to encode the detail.

As in the work of Li et al. [2009] we transfer detail by offsetting
vertices on the template so that the deformed mesh better matches
the input. However, rather than seeking the offsets that bring the
template vertices closer to the input, we first independently model
the template and input’s detail as offsets along a smoothed normal
field, and then replace the template’s offsets with those of the input.

Figure 5 compares the two approaches, with the tracked template and
input geometry shown on the left and the results for [Li et al. 2009]
and our method shown on the right. (To better reveal the detail, two
passes of 1-to-4 subdivision are applied to the tracked mesh.) The
figure highlights two limitations of the work of Li et al.: The smooth
offset constraint required to mitigate the effects of misregistration
also results in less effective transfer of the higher-frequency content.
And, even using a smoothness constraint, the offset surface is noisy
when the underlying normal field is not smooth.

Figure 5 also illustrates a limitation of our approach. Topological
errors in the reconstructed surface may lead to inconsistent detail
layers. For instance, near the elbow on the left side of the image, the
template (respectively, input) has positive (respectively, negative)
mean curvature so the smooth surface is obtained by insetting
(respectively, offsetting). Consequently, the template surface is
inset twice, shrinking the area around the elbow.

Pseudocode DetailTransfer outlines the steps of the algorithm. First
we hierarchically define the template and input meshes as normal
offsets from smoother base-domains (Figure 6). Then we replace
the offsets of the template with those of the input.

Noting that the normal offset that smooths a surface corresponds
to the mean-curvature, this approach is akin to replacing (hierarchi-
cally) the mean-curvature of the template with the mean-curvature
of the input.

NormalOffsetToBase Given a mesh and smoothness parameters
for the normal field and the target base layer, we first compute the
smooth normals and then compute the normal offsets that generate
the smooth layer.

SmoothNormals A naive method for smoothing the normals
would first compute the Gauss map and independently diffuse the
coordinate functions. The problem is that this approach ignores the



Figure 5: Transferring detail from the tracked geometry to the input frame.

DetailTransfer( F0 , F1 , ε , ε , L )

1 for α ∈ {0, 1}:
2 F̃α ← Fα
3 for l ∈ [0, L):
4 ( ~nlα , hlα )← NormalOffsetToBase( F̃α , ε · 4l , ε )
5 F̃α← F̃α + hlα · ~nlα
6 Φ∗← PullBack( F̃0 , F̃1 )
7 for l ∈ [0, L):
8 F̃0← F̃0 − Φ∗(hl1) · ~nl0
9 return F̃

NormalOffsetToBase( F , ε , ε )

1 ~n← SmoothNormals( F , ε )
2 h← EstimateOffsets( F , ~n , ε )
3 return ( ~n , h )

fact that the normal field lies on the sphere. In practice, this can
result in undesirable artifacts such as the simultaneous vanishing
of the coordinate functions (making it impossible to define a unit-
normal) or the convergence of each of the coordinate functions to a
constant (which would not provide a meaningful normal field).

Instead, we simulate the diffusion of the normal field as a map
between manifolds. That is, we constrain the normals to change
in the tangent plane of the corresponding point on the sphere.
Specifically, initializing ~n to be the Gauss map, we solve for the
tangent offset field ~t that minimizes the energy:

E(~t) =

∫
F

[∥∥~t∥∥2 + ε ·
∥∥∇(~n+ ~t)

∥∥2] dp,
with the first term penalizing large changes and the second
encouraging smoothness of the resulting map.

Using the Euler-Lagrange formulation, the minimizer ~t is the
solution to the screened-Poisson equation:

(1− ε ·∆)~t = −ε · π(∆~n) (1)

where the Laplace-Beltrami operator, ∆, is applied to each of the
coordinate functions of ~t and ~n independently and π is the operator
projecting onto the tangent space.

Lastly, we update the normal field by applying the offset and
rescaling, ~n← (~n+ ~t)/‖~n+ ~t‖.

This approach resolves both problems: Shifting a point on the sphere
by a vector in the point’s tangent space (1) only moves the point
further from the origin, so it is impossible for it to be zero, and (2)
after normalization, the shift only moves a point to a position in the
same hemisphere, making it impossible to have all points move to
the same position if the initial mapping was surjective.

Note that the diffusion can be iterated and, if it converges, the result
is a harmonic map from F to the sphere. In particular, when F is
genus-0 the resulting map is a conformal spherical parameterization.
For examples we refer the reader to the supplemental material.

EstimateOffsets Given the initial embedding of the surface,
φ : F → R3 (with φ(p) = p for all p ∈ F ) and given the smoothed
normal field ~n, we solve for the normal offsets h minimizing:

E(h) =

∫
F

[∥∥h∥∥2 + ε ·
∥∥∇(φ+ h · ~n)

∥∥2] dp,
with the first term penalizing large offsets and the second
encouraging smoothness of the resulting embedding.

Using the Euler-Lagrange formulation, the minimizer h is the
solution to the screened-Poisson equation:(

1− ε · (~n∗ ·∆ · ~n)
)
h = −ε · (~n∗ ·∆) · φ (2)

where ~n∗ is the dual of the normal field (taking a vector in R3 and
returning the dot-product with the normal).

To mitigate the shrinking effects of mean-curvature flow, we adjust
the offset function so that it has zero mean, h← h−

∫
F
h/
∫
F

1.

PullBack Since the surfaces F andG have already been registered
using ICP, we simply define a correspondence map as the map taking
a point on the source to the closest point on the target:

Φ(p) = arg min
q∈G

‖p− q‖2 , ∀p ∈ F. (3)

The pull-back of this map is then used to transform the offsets
computed on the target to offsets on the source:

Φ∗(hG) ≡ hG ◦ Φ.

5.6 PropagateVolume

Finally, having registered the surface of the tracked mesh ∂F q to
the neighbor F̃r we extend the registration to the interior of the
volume. To do this, we solve the volumetric As-Rigid-As-Possible
registration problem [Chao et al. 2010], seeking the position of the
interior vertices of F r that minimize the ARAP energy from the
initial template F a to F r while locking the boundary vertices to the
positions of F̃r .



Figure 6: Hierarchical detail extraction. Using the base layer from one pass of detail-transfer as the input to the next lets us extract details
across different frequencies.

6 Synthesizing seamless transitions

Having tracked the windows consistently, we now construct an
animation that transitions from the first frame of the source window
to the last frame of the target.

Pseudocode SynthesizeTransition outlines the construction steps.
First, the target window is rigidly aligned to the source. Next,
starting and ending textures are obtained by projecting the input
textures, Is−k and It+k, onto the tracked geometries, F st−k and F stk ,
and the optical flow field is estimated. Then, intermediate frames
are constructed by minimizing a rigidity-invariant objective function
and intermediate textures are generated by advecting the start texture
forward, the end texture backward, and blending.

SynthesizeTransition( W s , W t , ε , ε , L )

1 (o,R)← AlignWindows( F s , F t )
2 Ist−k ← ProjectTexture( Fs−k , Is−k , F st−k )
3 Istk ← ProjectTexture( Ft+k , It+k , F stk )
2 ~v←MeshOpticalFlow( Fa , Ist−k , Istk , ε , ε , L )
3 for i ∈ [−k, k]:

4 F
st
i ← FitARAP( F s+i , F t+i , R )

5 F
st
i ← Pose( F s+i , F t+i , F

st
i , R , o )

6 λi← (i+ k)/2k

7 Isi ← Advect( Fa , Ist−k , λi · ~v )
8 Iti ← Advect( Fa , Istk , −(1− λi) · ~v )
9 Isti ← Isi · (1− λi) + Iti · λi

6.1 AlignWindows

We solve for the optimal translation and rotation registering F t to
F s by using Horn’s method [Horn et al. 1988] to find the translation
o ∈ R2 and rotation R ∈ SO(2) that minimize the weighted sum
of squared differences:

E(R, o) =
∑
i

wi ·mi ·
∥∥psi − (R(pti) + o)

∥∥2
with {psi} (respectively, {pti}) the vertices in F s (respectively, F t),
mi the mass of the i-th vertex (the sum of the volumes of the
incident tetrahedra in F s and F t), and wi a weight that gives higher
importance to vertices that are closer to the ground plane.

Biasing the registration towards the lower parts of the body helps
avoid undesirable “gliding” motion and we set the weight as:

wi = exp

(
−
(
zsi + zti

)2
2σ2

z

)

with zsi (respectively, zti ) the z-coordinate of the i-th vertex in F s

(respectively, F t) and σz is the rms height from the ground:

σ2
z =

∑
imi ·

(
zsi + zti

)2∑
imi

.

6.2 ProjectTexture

When the calibrated camera images of the original scanned
performance are available, we texture the frames at the boundary of
the transition by projecting these images as in [Collet et al. 2015],
where the contributions from non-occluded images are weighted
by dot-product of camera orientations and surface normals. If the
original camera images are not available, we can use nearest-point
sampling to assign texture colors.

6.3 MeshOpticalFlow

To texture the frames in the interior of the transition we estimate
the optical flow field ~v that takes the texture from the first frame
in the source window to the texture in the last frame of the target
window. Given such a flow field, we synthesize in-between textures
by flowing the texture from the first frame of the source forward, the
texture from the last frame backward, and blending.

We do this by extending the classical optical flow al-
gorithm [Lucas and Kanade 1981; Tomasi and Kanade 1991;
Shi and Tomasi 1994] from signals on images to signals on meshes.
Computing optical flow directly on the surface offers a solution that
is geometry-aware and agnostic to occlusions and texture seams.

For images, optical flow is often implemented over a multiresolution
pyramid, using the lower resolutions to define the low-frequencies
of the flow (that register the lower frequencies of the source and
target images) and refining at successively higher resolutions.

As meshes do not carry a hierarchical structure, we adapt the
algorithm by introducing a penalty term that encourages the flow to
be smooth. Initially, the source and target signals are smoothed and
the penalty term is given a high weight so that we focus on estimating
the lower frequencies of the flow. The source and target are then
advected along the estimated flow so that they are roughly aligned,
and the process is repeated with less smoothing of the source and
target and smaller smoothness penalty to allow for high-frequency
correction.

Figure 7 compares results of linear blending (middle) and our optical
flow (right) when synthesizing the texture for the middle frame of
a 21-frame sequence. Due to the texture motion, linear blending
exhibits significant ghosting artifacts in the face and shirt while
optical flow better preserves the detail. Since the true texture is
also captured (left), we can compare to it directly. Unfortunately,
traditional similarity measures like RMS and SSIM fail to capture
the improved detail preservation because the underlying L2 distance
is actually greater when detail is (even slightly) misregistered than
when it is blurred. In contrast, comparing color histograms using
the Earth Mover’s Distance shows that optical flow better preserves
the distribution of texel values, but this measure fails to incorporate



Figure 7: Comparison of the in-between texture synthesized using
linear blending (middle) and the texture synthesized using our
optical flow (right) with the “ground-truth” acquired texture (left).

spatial information. Finding a good measure of texture similarity is
an interesting area for future work.

MeshOpticalFlow( F , I0 , I1 , ε , ε , L )

1 ~v← 0

2 for l ∈ [0, L)

3 ~v← ~v+RefineFlow( F , I0 , I1 , ~v , ε/4l , ε/4l )
4 return ~v

RefineFlow At each hierarchy level, the vector-field ~v is refined by
smoothing the input signals, flowing the smoothed signals halfway
along ~v so that they are coarsely registered to each other, estimating
the higher-resolution flow ~ν that aligns the coarsely registered
signals, and incorporating the refining flow ~ν back into the vector
field ~v.

RefineFlow( F , I0 , I1 , ~v , ε , ε )

1 Ĩ0← Advect( F , SmoothSignal( I0 , ε ) , ~v/2 )
2 Ĩ1← Advect( F , SmoothSignal( I1 , ε ) ,−~v/2 )
3 ~ν ← EstimateFlow( F , Ĩ0 , Ĩ1 , ε )
4 λ← GetScale( F , Ĩ0 , Ĩ1 , ~ν )
5 return λ · ~ν

SmoothSignal To smooth the signal I on surface F , we solve for
the signal Ĩ that minimizes the energy:

E(s̃) =

∫
F

[(
Ĩ(p)− I(p)

)2
+ ε · ‖∇I(p)‖2

]
dp,

with the first term penalizing deviation from the input signal and the
second encouraging smoothness.

Using the Euler-Lagrange formulation, the minimizer Ĩ is the
solution to the screened-Poisson equation:

(1− ε ·∆)Ĩ = I (4)

where ∆ is the Laplace-Beltrami operator on F .

Advect To flow a signal I along a vector field ~w, we compute the
streamlines of the vector field:

γ ~wp : [0, 1]→ F

and set the value of the advected signal by following the flow line
backwards and sampling:

Ĩ(p) = I
(
γ−~wp (1)

)
. (5)

EstimateFlow To refine the flow, we follow the optical flow
implementation for images, seeking the flow ~ν such that the change
obtained by flowing I0 along ~ν explains the difference between
I1 and I0. And, symmetrically, flowing I1 along −~ν explains the
difference between I0 and I1.

Using a first-order approximation, the change in the value of a signal
I advected by a vector field ~w is given by the negative of the dot-
product of I with the vector field: −〈∇I, ~w〉.
Thus, the correction vector field (approximately) satisfies:

−〈~ν,∇I0〉 = I1 − I0 and 〈~ν,∇I1〉 = I0 − I1.

Setting δ(p) = I0(p) − I1(p) to be the difference between the
signals, the flow is given as the minimizer of the energy:

E(~ν) =

∫
F

1∑
i=0

(
〈∇Ii(p), ~ν(p)〉 − δ(p)

)2
+ ε · ‖∇~ν(p)‖2 (6)

with the first term penalizing the failure of the vector field to explain
the difference in signals, and the second encouraging smoothness of
the flow.

Again, using the Euler-Lagrange formulation, the minimizer ~ν is the
solution to a linear system:

(ρ∗0 · ρ0 + ρ∗1 · ρ1 − ε ·∆)~ν = (ρ∗0 + ρ∗1)δ (7)

where ρi is the linear operator taking vector fields to scalar fields
by evaluating the point-wise dot-product of the vector field with the
gradient of Ii:

ρi(~w)(p) = 〈~w(p),∇Ii(p)〉,

ρ∗i is its adjoint, and ∆ is the Hodge Laplacian.

GetScale A problem with using a soft smoothness constraint is
that the penalty not only encourages the vector field to be smooth,
but also small. This has the effect of dampening the flow. We correct
the dampening by solving a 1D optimization problem to get the
correct scale.

Fixing ~ν, we forgo the smoothness penalty from Equation (6) and
define the energy of the scale λ as:

E(λ) =

∫
F

1∑
i=0

(
〈∇Ii, λ · ~ν〉 − δ

)2
dp.

Setting the derivative to zero, we get:

λ =

∫
F
δ〈∇I0 +∇I1, ~ν〉 dp∫

F
〈∇I0, ~ν〉2 + 〈∇I1, ~ν〉2 dp

. (8)

Discussion Though our work is the first to consider the problem
of optical flow for signals on surfaces, we have recently discovered
that a similar scale-space approach had been proposed for images
by Alvarez et al. [1999]. The two approaches differ in several ways.

1. To extend optical flow to surfaces, we replace (linear) translation
by the flow field ~v with (non-linear) exponentiation/advection in
order to account for the curvature of the surface.

2. We formulate the regularization in terms of the Hodge Laplacian
(rather than the Laplacians of the flow field coefficients) as there
is no canonical coordinate frame for representing ~v.

3. While Alvarez et al. use a fixed smoothing weight ε for all levels
of the hierarchy, we reduce this weight at finer scales. (We have
found that this generates better flows in fewer iterations.)



Figure 8: Comparison of intermediate pose synthesis using linear
interpolation, surface ARAP, and volumetric ARAP.

4. To mitigate the shrinking of the flow field due to the smoothness
constraint, we perform a subsequent scaling estimation/correc-
tion step, GetScale. In [Alvarez et al. 1999] the shrinking may
be accounted for by using more refinement iterations.

5. To support boundary-aware flow fields, Alvarez et al. scale the
smoothness term by a weight that decays with the size of the
signal’s gradient. We don’t currently support this.

6.4 FitARAP

We synthesize the in-between frame by solving for the geometry
that minimizes the weighted sum of as-rigid-as-possible energies
between the new frame and the source and target. Figure 8
shows a visualization of the results of frame synthesis for frames
Fs and Ft (first column). Using naive linear interpolation to
synthesize the half-way mesh (second column) results in noticeable
distortion and shrinking, but is a good initialization for the ARAP
optimization. Surface ARAP (third column) provides good results
even for dissimilar poses, but does not preserve the volume as well
as volumetric ARAP. (See the left arm and thigh.)

Our intrinsic pose interpolation is obtained following the approach of
Von-Tycowicz et al. [2015] – we minimize a weighted sum of ARAP
energies (for each connected component). Given source and target
frames, F s+i and F t+i, we solve for the frame F

st
i minimizing:

E(F
st
i ) = (1− λi) ·EARAP(F

st
i , F s+i) + λi ·EARAP(F

st
i , F t+i)

withEARAP(·, ·) the same volumetric ARAP energy as in Section 5.6
(but without locking boundary vertices this time), and λi the
interpolation weight given by the cubic blending kernel:

λi = 3

(
i+ k

2k

)2

− 2

(
i+ k

2k

)3

.

We use a cubic blending function rather than the simpler linear
function because the vanishing derivative at the end-points i = ±k
ensures that we not only interpolate the frames Fs−k and Ft+k but
also the velocity of the animations at these frames. (See Figure 9.)

6.5 Pose

Given the source and target frames, F s+i and F t+i, the result of the
ARAP registration gives a transition frame F

st
i that is only defined

up to rigid transformation. To pose the (connected component of the)

Figure 9: Given spatially aligned transition windows Ws and
Wt (first and second rows), we interpolate between corresponding
frames to synthesize the frames transitioning from Fs−k to Ft+k.
Using a linear blending function fails to preserve the velocity of the
animation at the starting and ending frames (third rows). This is
resolved by using a cubic blending kernel (bottom row).

synthesized frame, we solve for the translation õ ∈ R3 and rotation
R̃ ∈ SO(3) that minimizes the weighted sum of registration errors:

E(õ, R̃) =
∑
j

mj

[
(1− λi)

∥∥∥(R̃(pstj ) + õ
)
− ps+ij

∥∥∥2
+ λi

∥∥∥(R̃(pstj ) + õ
)
−
(
R(pt+ij )− o

)∥∥∥2]
with pstj the j-th vertex of the synthesized frame F

st
i , (o,R) the

rigid registration from AlignWindows that best aligns the target to
the source, and mj the mass of the j-th vertex. We then apply the
rigid transformation to the vertices of F

st
i .

7 Motion graph traversal

Having constructed a motion graph by synthesizing transitions, we
create new motions by traversing the graph, either stochastically or
deterministically.

In either case, graph traversal requires updating the actor’s
world pose. As in [Kovar et al. 2002], we assign a 2D rigid
transformation to each graph edge. For edges of the input sequence,
this transformation is the identity. For edges corresponding to
synthesized transitions, it is the rigid transformation computed for
window alignment (Section 6.1). As we traverse each graph edge,
the transform is applied to the actor’s pose.



In the following discussion, we assume that the graph G is trimmed
to its largest strongly connected component. Also, we reduce the
complexity of the graph by removing all vertices whose indegree
and outdegree are both one. Consequently, the number of graph
edges becomes at least twice the number of graph vertices.

7.1 Random walk

For random traversal, we generalize the motion graph to a Markov
chain G = (F , E , P ) by defining a (sparse) transition probability
matrix P which assigns to each directed edge e = (Fi, Fj) ∈ E
a transition probability pi,j . Outgoing probabilities at each node
must sum to unity, i.e., P 1 = 1.

We explore a new technique to assign transition probabilities P such
that the steady-state distribution S(P ) of the Markov Chain, i.e., the
probability of being at any given node after a long random walk, is
as close to uniform as possible. More precisely, S(P ) is the unique
left eigenvector of P with eigenvalue one [Levin et al. 2009].

In practice, S(P ) can approximate a uniform distribution after
activating just a few transitions in G. For example, if there exists
a transition from the last input frame to the first, enabling just this
single transition makes the steady-state distribution uniform. To
avoid these undesirable trivial solutions, we add the Frobenius norm
‖P‖F as a regularization term. It is equivalent to the sum of L2

norms of the rows of P and encourages uniformity of outgoing
transition probabilities at all nodes.

Denoting the uniform distribution as π = 1/|F|, our objective is

min
P

α · |F| · ‖S(P )− π‖2 + (1− α) · |E||F|2 · ‖P‖
2
F

subject to P 1 = 1,

pi,j ≥ 0,

pi,j = 0 if (Fi, Fj) 6∈ E

with |F| and |E|/|F|2 balancing the two penalty terms.

This is a constrained nonlinear objective whose derivatives are
difficult to estimate accurately. We minimize it using the direct
solver in the MATLAB patternsearch routine, using a maximum
of 104 function evaluations and setting α = 0.08 in all our examples.
As a starting state for the nonlinear minimization, we first minimize
the quadratic proxy energy

α · |F| · ‖πP − π‖2 + (1− α) · |E||F|2 · ‖P‖
2
F

subject to the same constraints. This energy is motivated by the fact
that S(P ) is the only distribution satisfying S(P )P = S(P ) on
irreducible Markov chains [Levin et al. 2009].

Figure 10 shows an example result on the Breaker dataset,
demonstrating that the use of optimized transition probabilities
generates random walks that visit the input frames more uniformly.

One can assign the target distribution π in the optimization to be non-
uniform, if it is desirable to make certain portions of the captured
sequence occur less frequently as they would in a natural human
performance. An interesting direction for future work would be to
automatically learn such adapted distribution.

7.2 Shortest paths

For deterministic path generation, we implement a viewer program
that supports interactive graph traversal. By default, it plays the
input sequence. However, when the user selects a target frame, the
program finds (and traverses) the shortest-path in the motion graph
that goes from the current frame to the one prescribed. We refer the
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Figure 10: Plot of probability distributions on the input frames of
the Breaker dataset for random walks over its motion graph. The
horizontal blue line shows the target uniform distribution. The
orange curve shows the steady-state distribution using uniform
transition probabilities. The gray curve shows the same for our
optimized transition probabilities. The optimized probabilities lead
to a much more uniform coverage of the input frames.

reader to the accompanying videos for a real-time screen-capture of
a user interacting with the motion graph.

8 Results and discussion

We have evaluated our approach on a number of datasets, ranging
from short captures (∼200 frames) to longer ones (∼2000 frames).
With the exception of Street Dancer and Dan, all the input sequences
are unstructured. Parameter settings for the algorithms are provided
in the appendix. These settings are identical across datasets.

Figure 11 visualizes a number of these datasets by showing a uniform
sampling of frames from across the input sequence (indicated by
the colored dots along the red line at the bottom). Despite the
complexities and variability of the input, our approach successfully
synthesizes a large number of transitions, providing rich motion
graphs. In the images, the synthesized transitions are visualized by
the black arcs connecting different points along the input sequence.
(Note that the input sequence runs from left to right, while the
synthesized transitions come in pairs.)

Datasets Example frames uniformly sampled from individual
transitions are shown in Figure 12. Though not part of the input data,
these transitions represent plausible complex actions (e.g.,bending,
kicking, waving hands) and do not exhibit unnatural articulation in
the geometry or unwanted ghosting in the texture. For a dynamic
visualization of both the input and the synthesized transitions, we
refer the reader to the accompanying video.

Table 1 summarizes for each capture sequence the number of
frames in the input and the (largest strongly connected component)
output, as well as the number of candidate windows, successful
windows, and output windows. The Street Dancer and
Dan captures are composed of several performances (6 and 10
respectively) with common parametrization. For these, we explicitly
construct seamless transitions between boundaries of consecutive
performances (Section 6); note that the presence of a common
parametrization implies that any “candidate transition” is trivially
successful as there is no need for window tracking.

Detailed running times Table 2 focuses on the Slick Magic
sequence, factoring the computation time into the independent
phases described in Sections 3-7. (Steps with negligible computation
times are omitted.)

The Slick Magic input sequence consists of n = 2283 frames, each
represented by a mesh with roughly 10K faces and a 1Mpixel texture
atlas. Using our similarity-based pair selection, we identified l̃ = 53



Figure 11: Results of motion graph construction, showing a uniform sampling of the frames in the input sequences for Breakers, Reporter,
Slick Magic, and Street Dancer. The images also show the synthesized transitions (represented by the arcs).

Capture Frames Transitions

Ballerina 282 : 125 18 : 18 : 11
Breakers 443 : 253 42 : 16 : 13
Dan 587 : 563 54 : 54 : 54
Soccer Guy 593 : 430 86 : 76 : 64
Reporter 612 : 572 58 : 48 : 43
Girl 989 : 164 42 : 20 : 13
Street Dancer 1800 : 1637 100 : 100 : 83
Slick Magic 2283 : 2097 106 : 76 : 72

Table 1: Frame size (input:output) and transition counts (candi-
date:successful:output) for all processed sequences. (Street Dancer
and Dan sequence courtesy of [Starck and Hilton 2007]; all others
courtesy of [Collet et al. 2015].)

candidate transition pairs. We successfully tracked l = 38 of these
pairs to get 76 forward and backward transitions, each of which was
2k + 1 = 21 frames long. Extracting the largest strongly connected
component, we obtained a final motion graph covering 2097 of the
input frames and containing 72 synthesized transitions.

Running on a PC with a quad-core i7-5700HQ processor and 16GB
of memory, it took roughly 10 minutes to identify candidate window
pairs, 5 hours to fit a template to each of the window pairs, 3 hours
to synthesize the transition frames, and one minute to compute the
transition probabilities.

Identifying candidate window pairs requires computing shape
descriptors for each of the n frames and then performing an
n · (n− 1)/2 comparisons between the descriptors.

Tracking the windows requires computing a tetrahedralization of
the template for each of the l̃ window pairs. Then the template
surface is propagated to the other l̃ × (4k + 1) frames. Having
identified the l windows for which surface propagation succeeded,

(§4) Finding candidate transition windows 9
descriptor computation <1
descriptor comparison 9

(§5) Tracking the windows consistently 295
tetrahedralizing the template 5
propagating the surface template 168 + 36
transferring geometric detail 38
propagating the volumetric template 37

(§6) Synthesizing seamless transitions 172
texture projection 29
optical flow computation 56
frame synthesis 86

(§7) Assigning transition probabilities <1

Total time 478

Table 2: Running times (in minutes) for the different phases of
processing the Slick Magic sequence.

the input detail is remapped to the fit template surface and the surface
propagation is extended to the volume of each of the other l×(4k+1)
frames. In the table, we give the surface propagation times for the l
successful transitions (168 minutes) and the l̃ − l transitions failing
the Hausdorff distance test (36 minutes) separately.

To synthesize the transition frames, we project the textures onto the
two boundary templates of each of the 2l windows and estimate
the optical flow for each of the 2l transitions. Then, for each of the
2l × (2k − 1) non-boundary frames, the new frame geometry is
synthesized and texture is advected from the boundary frames.

Finally, direct search is used to compute the probabilities for the
maximally recurrent component of the graph.



Figure 12: Samples of the frames synthesized for transitions in the
Dan, Soccer Guy, and Girl datasets.

Limitations In sequences with few repeated poses, it is difficult
to construct a graph that covers a significant portion of the original
capture. This happens for the Girl sequence whose largest strongly
connected component only covers 164 of the original 989 frames.

For surfaces that have rotational symmetry (e.g., the ball in the
Soccer Guy sequence) template tracking may not correct for rotation.
As a result, the input textures may be too distant for optical flow.

Similarly, when texture detail appears and disappears (e.g., the
wrinkles in the shirt of the Slick Magic sequence) optical flow cannot
account for the change in color values, and ghosting may appear.

Our technique does not attempt to quantify physical realism in the
synthesized transition geometry. In fact, there is no explicit check
for surface intersections (i.e., collisions). In practice, we have not
encountered problems with these issues, likely because the window-
based similarity prunes poor candidate transitions.

9 Summary and future work

We have explored a new approach for constructing seamless motion
graphs from time-varying, textured meshes. The key insight is
to replace the problem of computing a template tracked across
the entire sequence with the simpler problem of computing local
templates tracked across pairs of short transition windows. The
approach comprises four steps: (1) finding candidate transition
windows; (2) imposing a locally consistent connectivity across the
windows; (3) synthesizing new textured frames to transition between
the windows; and (4) defining transition probabilities for the graph.

The resulting system takes as input a captured sequence of
unstructured meshes and generates a motion graph that supports
both stochastic and user-guided traversal. We validate our system
on a number of captures, ranging in size from 200 to 2000 frames,
showing successful synthesis of motion graphs that enable efficient
and seamless transition between different distant frames.

There are several directions for improving the system:

• Shape similarity could incorporate texture colors to improve
matching performance as in [Huang et al. 2015].

• For registering the fine-resolution input geometry with the
tracked template, one could explore other ways to transfer the
detail, e.g., using functional maps [Ovsjanikov et al. 2012].

• Mesh-based optical flow could be made more efficient at low
frequencies by leveraging multiresolution geometry processing
structures [e.g., Aksoylu et al. 2005; Chuang et al. 2009].

• Processing could be accelerated by automatically recognizing
when volumetric ARAP can be replaced by faster surface ARAP,
by parallelizing across frames, and by using a GPU-based surface
tracking approach [e.g., Zollhöfer et al. 2014].
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A Implementation details

In this appendix we provide implementation details for various steps
of the geometry processing. First we introduce some notation.

Linear systems We represent matrices by bold, upper-case
Roman characters (e.g. M ∈ RM×N ) and vectors by lower-case
Roman characters (e.g. v ∈ RN ). We represent the coefficients
of matrices and vectors with lower-case Roman characters (e.g.
mij ∈ R and vi ∈ R).

Given v ∈ RdN , we can think of v as an N -dimensional vector
whose coefficients are themselves d-dimensional column vectors.
Similarly, given M ∈ RdN×N , we can think of M as an N ×N -
dimensional matrix whose coefficients are d-dimensional column
vectors. Using this abuse of notation, we denote by diagd(v) the
N×N diagonal matrix whose diagonal entries are the d-dimensional
coefficients of v.

Given matrices M1 and M2, we denote by M1 ⊕M2 the matrix
with M1 and M2 along the diagonal:

M1 ⊕M2 =

(
M1 0
0 M2

)
.

Given a matrix M and integer k, we denote by M⊕k the block
diagonal matrix with k blocks, M⊕k = M⊕ · · · ⊕M.

Given matrices M1 and M2 (with the same number of rows), we
denote by M1

∣∣M2 the (horizontal) concatenation:

M1

∣∣M2 =
(

M1 M2

)
.

Geometry We assume that we are given a triangle meshM, and
denote by (V, T ) the vertices and triangles of the mesh.

Discrete functions are represented using the hat basis as elements
of R|V| [Dziuk 1988] and vector fields are represented using the
conforming basis of gradients and rotated gradients as elements of
R2|V| [de Goes et al. 2015].

We denote by M ∈ R|V|×|V| and S ∈ R|V|×|V| the (lumped)
mass and stiffness matrices. The former is the diagonal matrix
with one third of the area of a vertex’s one-ring on the diagonal,
and the latter is the ubiquitous cotangent Laplacian [Dziuk 1988;
Pinkall and Polthier 1993]. And we denote by H the Hodge-
Laplacian for vector fields, H =

(
S ·M−1 · S

)⊕2.

Given an orthonormal tangent frame at each triangle, we denote
by J ∈ R2|T |×2|T | the operator that rotates each triangle’s tangent
vector by 90◦, we denote by G ∈ R|V|×2|T | the operator that returns
the gradient of a scalar function, and we denote by B ∈ R2|T |×2|V|

the matrix that takes a vector field expressed in terms of the
conforming basis and returns the coefficients with respect to the
per-triangle tangent frame, B = G

∣∣J ◦G.

A.1 Shape matching

To compute the similarity matrix D we proceed in two steps.

Per-frame computation We use ShapeSPH [Kazhdan 2013] to
compute the discrete indicator and Euclidean Distance Transforms
functions for each shape, represented as a grid of 2N ×N/2×N
samples in cylindrical coordinates, with indices corresponding to
angle, radius, and height. We then compute the 1D FFT across
each row of angles to get a representation of frame Fi by the
complex Fourier coefficients of the indicator and Euclidean Distance
Transform:

X̂i, Êi ∈ C2N×N/2×N .

This computation is performed for each of the n frames and has
complexity O(n ·N3 logN).

Comparing pairs of frames Given the Fourier coefficients, we
compute the similarity between frames s and t by correlation,
multiplying the Fourier coefficients into the vector ĉst:1

ĉsti =

k∑
l=−k

ωk ·
N/2∑
m=1

m ·
N∑
n=1

(
x̂s+kimn · ê

t+k
imn + ês+kimn · x̂

t+k
imn

)
,

taking the inverse Fourier Transform to get the correlation values in
the spatial domain, and then finding the minimal correlation value:

dst = min
i∈[0,2N)

csti .

This computation is performed for each of the n2 pairs of frames
and has complexity O(n2 ·N3).

Parameters To compute distances, we use N = 64 for the
resolution of the voxel grid and set ω to be the fifth-order B-spline.
To define candidate transitions, we discard transition (s, t) if:

• The frames are too close to each other: |s− t| < 60.

• The candidate transition is too close to an existing transition
(s̃, t̃): |s− s̃| < 20 and |t− t̃| < 20.

• The dissimilarity is too large: dst > 3
(∑

i di,i+1

i−1

)
.

A.2 As-rigid-as-possible registration

To compute the volumetric ARAP energy we use the tetrahedron-
based implementation of libigl [Jacobson et al. 2016]. Given two
tetrahedral meshes (V1,K) and (V2,K) with the same tessellationK,
the ARAP energy is given by

E(K,V1,V2) =
∑
σ∈K

|σ|1 · min
R∈SO(3)

‖R− Lσ‖2F

withLσ the linear component of the affine map taking the embedding
of σ through V1 to its embedding through V2, |σ|1 the volume of σ
under the embedding of V1, and ‖ · ‖2F the squared Frobenius norm.

We minimize this nonlinear energy by running 20 iterations of
the local/global approach of Sorkine and Alexa [2007], alternating
between solving for the optimal rotations and solving for the optimal
vertex positions.

When performing the tracking (Section 5.6) we initialize the solver
with the vertex positions of the tracked frame when the two frames
are in the same window. When the frames are in different windows
(e.g., tracking from Fs to Ft or vice-versa) we apply the rigid
transformation whose translational component aligns the centers
of mass and rotational component minimizes the dissimilarity:

Dst(R) = 〈EDT2
s, R(χt)〉+ 〈χs, R(EDT2

t )〉

from Section 4. When synthesizing the geometry of in-between
frames (Section 6.4) we use the weighted linear blend of the vertex
positions in the source and aligned target as the initial guess.

A.3 Detail transfer

We assume that we have source and target meshesMα = (Vα, Tα),
with α ∈ {0, 1}. We denote the vertex positions and normals by the
3|Vα|-dimensional vectors of (linearized) coefficients, vα and nα.

1The multiplication by the radius m is required to account for the
circumference of the circle.



Normal smoothing (Equation 1) Given the mesh normals, we
compute the (linearized) tangent vectors, t1, t2,∈ R3|V|, where
the i-th tangents are perpendicular to the i-th normal. We set
T = diag3(t1)|diag3(t2) to be the operator that takes tangent
coefficients and returns the (per-vertex) tangent vectors.

The tangential offsets o with respect to this frame are given by the
solution to the 2|T | × 2|T | linear system:(

Tt · (M + ε · S)⊕3 ·T
)
o = −ε · (Tt · S⊕3) · n.

And, we define the new normal positions by offsetting the original
normals in the tangent direction, ñ = n + T · o, and normalizing
so that the normals have unit length.

We note that though the implementation requires choosing tangents
at each vertex, the smoothed normals are independent of this choice.

Offset estimation (Equation 2) Given the smoothed normals, ñ,
the offsets h are given by the solution to the |V| × |V| linear system:(
diagt3(ñ) · (M + ε · S)⊕3 · diag3(ñ)

)
h = −ε ·(diagt3(ñ) ·S) ·v.

Then, setting 1 ∈ R|V| to be the vector whose entries are all 1, we
adjust h to have zero mean by setting:

h← h− 1t ·M · h
1t ·M · 1 · 1.

Registration (Equation 3) We define the pull-back of the
registration as the matrix P ∈ R|V0|×|V1| whose i-th row entries are
defined by:

• Finding the point onM1 closest to the i-th vertex ofM0.

• Computing the barycentric coordinates of the point relative to
the vertices of the containing triangle.

• Setting the entries corresponding to these vertices to the
barycentric weights (and all other row entries to zero).

For computing the closest point, we use the TriMesh kD-tree
implementation [Rusinkiewicz 2004].

Parameters In implementing the detail transfer, we use ε = 10−3

for the normal smoothing weight, ε = 10−4 for the offset smoothing
weight, and L = 3 for the number of hierarchy levels.

A.4 Optical flow

We assume that we have a single meshM with source and target
signals s0 and s1. For simplicity, the discussion will assume that the
signals are single-channel, though the extension to multi-channel
signals is straightforward.

Preprocess We begin the optical flow pipeline by transforming
the texture map into a signal on the mesh. This is done by setting
the value at each vertex to the average value of the texture map on
the vertex’s one-ring. In practice, we also subdivide the mesh by
splitting edges longer than a threshold and re-triangulating in order
to ensure that the signal captures sufficient texture detail.

Runtime Our implementation of the optical flow consists of four
steps: Smoothing, advection, flow estimation, and scale adjustment.

Signal smoothing (Equation 4) The smoothed signal s̃ is given
as the solution to the |V| × |V| linear system

(M + ε · S)s̃ = M · s.

Advection (Equation 5) Given a point p ∈ M, we evaluate the
scalar field s advected along ~v for time t by taking N geodesic
steps along the mesh. At each step we evaluate the vector field
~v at p (determined by the triangle containing p) and update the
position by taking a unit steps backwards along the geodesic from
p in direction −~v(p)/N . This is implemented by following the
straight line defined by the tangent and unfolding adjacent faces if
a triangle edge is reached. (See, for example, the implementation
in [Prada and Kazhdan 2015].) Finally, we set the value of the
advected signal by sampling the input signal at the new position p.

When the p is a vertex, we offset p by a small amount into each
adjacent triangle and proceed as above, using the average over
adjacent triangles to set the value of the advected scalar field at p.

Flow estimation (Equation 7) To discretize the flow estimation,
we define the following auxiliary operators:

• We set MT ∈ R|T |×|T | to be the triangle mass matrix – the
diagonal matrix whose i-th entry is the area of the i-th triangle.

• We set Dα ∈ R|T |×2|V| to be the matrix which takes a
vector field and returns the dot-product with the gradient of
sα, evaluated at each triangle:

Dα =
(
diag2

(
G(sα)

))t ·B.
We also set d ∈ R|T | to be the per-triangle difference between
the source and target, obtained by computing the difference of the
average values of s0 and s1 at the vertices.

Using these, the discretization of Equation (7) gives the correction
flow as the solution to the 2|V| × 2|V| linear system: ∑
α∈{0,1}

(Dt
α ·MT ·Dα)− ε ·H

 ~v =

 ∑
α∈{0,1}

Dt
α ·Mt

d.

Scale adjustment (Equation 8) Using the notation above, the
optimal scale is given as:

λ =
dt ·

(∑
α∈{0,1}MT ·Dα

)
· ~v

~vt ·
(∑

α∈{0,1}D
t
α ·MT ·Dα

)
· ~v
.

Postprocess After estimating the flow field on the mesh we
use it to advect the texture: For each texel center, we locate its
corresponding position within a triangle of the mesh, follow the
stream-line defined by the flow, and sample the input texture at the
advected position. We then set the value at the starting texel position
to the sampled value.

Parameters In implementing the optical flow we use ε = 3 ·10−3

for the signal smoothing weight, ε = 106 for the offset smoothing
weight, and L = 7 for the number of hierarchy levels.

Note A limitation of using this conforming basis is that for genus-
g surfaces, the span of the basis does not include the harmonic vector
fields – the 2g-dimensional space of curl- and divergence-free vector
fields. We do not find this to be a problem for our applications as our
datasets consist of human characters which are genus-0. However,
extending the approach to surfaces of arbitrary genus would require
either explicitly estimating a basis for the harmonic vector fields
and incorporating that within the system, or using a different (e.g.
edge-based) discretization of vector fields.


