
Automating Image Morphing using Structural Similarity
on a Halfway Domain
JING LIAO
Hong Kong UST and Zhejiang University

RODOLFO S. LIMA
Instituto Nacional de Matemática Pura e Aplicada (IMPA)

DIEGO NEHAB
Instituto Nacional de Matemática Pura e Aplicada (IMPA)

HUGUES HOPPE
Microsoft Research

PEDRO V. SANDER
Hong Kong UST

JINHUI YU
Zhejiang University

The main challenge in achieving good image morphs is to create a map
that aligns corresponding image elements. Our aim is to help automate this
often tedious task. We compute the map by optimizing the compatibility of
corresponding warped image neighborhoods using an adaptation of structural
similarity. The optimization is regularized by a thin-plate spline, and may
be guided by a few user-drawn points. We parameterize the map over a
halfway domain and show that this representation offers many benefits. The
map is able to treat the image pair symmetrically, model simple occlusions
continuously, span partially overlapping images, and define extrapolated
correspondences. Moreover, it enables direct evaluation of the morph in
a pixel shader without mesh rasterization. We improve the morphs by
optimizing quadratic motion paths and by seamlessly extending content
beyond the image boundaries. We parallelize the algorithm on a GPU to
achieve a responsive interface and demonstrate challenging morphs obtained
with little effort.

Categories and Subject Descriptors: I.3.0 [Computer Graphics]: General

Additional Key Words and Phrases: image interpolation, warping, parame-
terization, motion paths, correspondences, GPU, Poisson extension

ACM Reference Format:
Liao, J., Lima, R. S., Nehab, D., Hoppe, H., Sander, P. V., and Yu, J.
Automating image morphing using structural similarity on a halfway domain.
ACM Trans. Graph. NN, N, Article NN (Month YYYY), PP pages.
DOI = 10.1145/XXXXXXX.YYYYYYY
http://doi.acm.org/10.1145/XXXXXXX.YYYYYYY

1. INTRODUCTION

Morphing between images is a long-studied problem, addressed in
numerous publications including surveys and books [Wolberg 1990,
1998; Gomes et al. 1999]. It usually involves a sequence of steps:
determining corresponding feature points in the images, defining

motion paths followed by these features, interpolating a mapping in
the space between the features, warping the images into alignment,
and finally blending the warped images to produce an animation.

The most challenging step is to establish a good correspondence map
between the images, as this is crucial to prevent ghosting artifacts
during blending. Creating this map usually involves significant
interaction, using tagged features such as points, lines, curves, or
grids. Such careful registration of intricate silhouettes can be tedious.

Our aim is to develop an optimization framework that simplifies
map creation by automatically aligning image structures including
irregular object boundaries. In many cases, an effective morph
requires a semantic understanding of the image content, which is
beyond the scope of this paper. Instead we let the user draw a small
number of point correspondences to guide the process at a high level.
The key is that this guidance should be simple and sparse.

There are numerous stereo and optical-flow techniques for esti-
mating image correspondences automatically. However, these tech-
niques assume the images are closely related, e.g., multiple views
of a consistent scene under similar lighting conditions. In contrast,
morphing often considers images of different objects. Therefore,
morphing approaches must allow inexact matching of image neigh-
borhoods (objects with different shapes and colors), and as a conse-
quence of this increased generality, they perform poorly for prob-
lems like optical flow where the images are known to be similar.

As reviewed in section 2, other work has also considered the problem
of optimization-guided image morphing [Gao and Sederberg 1998;
Matusik et al. 2005; Wu and Liu 2013]. Our approach is designed
to allow greater dissimilarities between images. Rather than
comparing colors or gradients at corresponding points, we compare
compatibility of corresponding warped image neighborhoods.
To this end we adapt the structural similarity (SSIM) measure
introduced for perceptual image comparison by Wang et al. [2004].

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

2 • Liao et al.

Fig. 1. Our optimization creates effective morphs between dissimilar
images by automatically aligning structural image features, requiring little or
no user guidance (here 0 and 7 point correspondences). Caricature by Court
Jones.

We make the resulting optimization framework more tractable by
representing the inter-image map using a halfway parameterization.
This representation offers a number of benefits:

• Symmetry: the parameterization does not favor either image.

• Continuity: the map can represent simple occlusion discontinu-
ities using a continuous function, thus simplifying regularization.

• Inclusivity: when extended at its boundaries, the parametric
domain spans the content from both images.

We show that the other steps in morphing also greatly benefit from
the halfway parameterization:

• Nonlinear paths: the map can concisely represent quadratic
motion paths to reduce deformation during the morph.

• Evaluation: the inverse map supports direct evaluation, so the
morphed image is computed within a simple pixel shader, without
rasterization of a fine triangle mesh.

• Extrapolation: correspondences are defined beyond the image
boundaries, enabling a joint-image Poisson extension scheme to
reduce boundary artifacts.

2. RELATED WORK

Algorithms for automatically finding image correspondences are
typically based on registration, optical flow, or stereo match-
ing (for surveys, see [Zitova and Flusser 2003; Baker et al. 2011;
Scharstein and Szeliski 2002]). These methods assume structural
relationships between source and destination images that are not
present in general image morphing. The same is true for view inter-
polation in image-based rendering (see survey in [Shum et al. 2003])
and for temporal upsampling of video sequences [e.g., Kang et al.
2003; Mahajan et al. 2009; Yang et al. 2011]. Nevertheless, for spe-
cialized image domains (such as faces or periodic textures), cor-
respondences can be found automatically [Bichsel 1996; Beymer
1996; Covell 1996; Liu et al. 2002; Yang et al. 2012]. Since match-
ing features is in general an ambiguous and subjective problem,
artistic control is fundamental. Even when assisted by snapping
tools [Kass et al. 1988; Mortensen and Barrett 1995], this interac-
tion can be tedious.

Several methods relate to ours in that they also establish dense
correspondences between images by optimizing particular choices
of similarity, smoothness, and distortion terms. The methods of

Fig. 2. The inter-image map φ is the composition of two maps defined
using a common vector field v on a halfway domain.

Gao and Sederberg [1998] and Wu and Liu [2013] measure image
similarity based on color or gradients, and therefore assume the
images to be related. Matusik et al. [2005] derives a similarity metric
based on the intensity of the compass operator [Ruzon and Tomasi
2001]. Their warp optimization is aimed at texture morphing and
does not offer artistic control. In contrast to these methods, our
algorithm accounts for map warping when comparing corresponding
image neighborhoods.

Yücer et al. [2012] present an approach to automatically transfer
edits across images of the same subject under strongly varying
viewpoints and changes in illumination. To this end, their method
creates a mapping between the two images. Unlike our approach,
their algorithm is designed specifically for images of the same
subject, with related colors and gradients.

Our halfway parameterization is related to the cyclopean coordinates
introduced by Belhumeur and Mumford [1992] for solving the
stereo correspondences problem, if one considers moving the camera
along the stereo baseline. Mahajan et al. [2009] generalize this
concept by allowing each pixel to have a different transition point,
an idea adopted by Wu and Liu [2013] as well.

Recent work has explored entirely different approaches to image
morphing that lead to interesting effects. Shechtman et al. [2010]
applied patch-based texture synthesis to achieve interesting morph-
like effects in a fully automated way. Darabi et al. [2012] fur-
ther improve the quality of patch-based synthesis for scenarios
where the two input images have very different colors and struc-
tures. Rather than morphing between a source and target im-
age, Photobios search among a large collection of images of the
same person to produce a plausible transition between two input
faces [Kemelmacher-Shlizerman et al. 2011].

There is relatively little work on controlling the motion paths of
features during the morph animation. The common approach of
linear interpolation does not reproduce rotations, as it leads to
unexpected non-monotonic deformations. One possibility is to offer
artistic control at each feature, as proposed by Nishita et al. [1993].
An alternative is to factor rotations out of local transformations
and interpolate the components independently [Zhang 1996;
Rossignac and Vinacua 2011]. We describe a technique to improve
motion paths using a quadratic path optimization at pixel resolution.

3. THE HALFWAY PARAMETERIZATION

The first step in traditional approaches for creating a morph between
a pair of images I0 and I1 is to define a map φ from I0 to I1. One
challenge is that each image may contain “disoccluded” regions

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

http://www.courtjones.com/
http://www.courtjones.com/

Automating Image Morphing using Structural Similarity on a Halfway Domain • 3

Fig. 3. With a halfway parameterization, discontinuities due to simple
occlusions are represented using a continuous vector field v. Here the
two images are represented as 1D vertical segments, and the associated
correspondence field v is plotted as a graph on the right.

which are invisible in the other image. Within disoccluded regions
of I0, map φ is typically left undefined, and across disoccluded
regions of I1, it must be discontinuous. To obtain a more complete
representation, one can introduce a second map from I1 back to I0,
but then maintaining consistency between the two maps during an
optimization process becomes quite expensive.

Inspired by earlier work [e.g., Mahajan et al. 2009], we address
these issues by forming the map using a halfway domain.
Specifically, we define a single 2D vector field v over a domain Ω

halfway between the two images, and use this field to create two
maps (see figure 2):

φ0(p) = p− v(p) and φ1(p) = p+ v(p). (1)

The inter-image map is the composition φ = φ1 ◦ φ
−1
0 . This

parameterization is nicely symmetric, because an exchange of the
two images simply corresponds to a negation of the vector field.
As illustrated in the 1D example of figure 3, the vector field v is
continuous even in the presence of simple occlusions. For instance,
the purple region in image I0 collapses to a point in image I1,
yet the vector field v defined over the halfway domain remains
continuous. Although the parametric domain area corresponding
to the purple region is shrunk, it is not degenerate. As shown
with the orange region, the map can also be used to extrapolate
correspondences when one image extends beyond the boundary of
the other. In fact, a simple constant extension of the vector field v
(using clamp-to-border sampling) yields useful correspondences
beyond the boundaries, as explored in section 7.

4. CORRESPONDENCE OPTIMIZATION

To compute the halfway parameterization that best aligns the
two input images, we develop a multiresolution coarse-to-fine
optimization algorithm that operates on a regular grid of vector
field samples v(p) defined over the halfway domain. At the finest
level of detail, the grid resolution matches that of the input images.
We first present the energy function that the algorithm minimizes to
find the best pixel neighborhood correspondences, then we describe
the multiresolution algorithm and our GPU implementation.

4.1 Energy Function

At each level in the coarse-to-fine optimization process, we optimize
the grid of vector values v(p) to minimize an objective energy E

Fig. 4. The SIM energy term measures structural similarity of correspond-
ing warped neighborhoods N0,N1 of the two input images.

defined over the halfway image domain Ω:

E = ∑
p∈Ω

E(p), with (2)

E(p) = ESIM(p)+λ ETPS(p)+ γ EUI(p). (3)

We next describe each of the three energy terms. (We use fixed
weights λ = 0.001 and γ = 100 for all results in this paper.)

Similarity energy. To measure if corresponding neighborhoods in
the two input images have similar edge structure, we use a modified
version of the structural similarity index (SSIM) introduced by
Wang et al. [2004].

For each gridpoint p in the halfway domain Ω, the correspond-
ing image neighborhoods are obtained using the current map-
pings φ0

(
N(p)

)
and φ1

(
N(p)

)
of a 5×5 neighborhood N(p) of p

(see figure 4). This allows severely warped neighborhoods to be
matched. For each halfway point p, we use bilinear interpolation
to gather the corresponding warped neighborhoods from images I0
and I1. Then, we evaluate

ESIM(p) =− 1
wh

SIM(N0,N1), with (4)

N0 = I0
(
φ0(N(p)

)
and N1 = I1

(
φ1(N(p)

)
(5)

(Normalization by wh makes the term resolution-independent, and
the negation turns a high similarity into a low energy.)

Just as in SSIM, the function SIM(N0,N1) is defined in terms of
the means, variances, and covariances of the pixel values in the two
neighborhoods. However, there are two key differences. First, we
omit the luminance term, because we want to match regions with
similar edge structure, regardless of luminance. And second, we take
the absolute value of the covariance term σN0N1 , because swapping
colors across an edge should not affect the energy. Formally:

SIM(N0,N1) = c(N0,N1) · s(N0,N1), with (6)

c(N0,N1) =
2σN0 σN1 +C2

σ2
N0

+σ2
N1

+C2
and (7)

s(N0,N1) =
|σN0N1 |+C3

σN0 σN1 +C3
. (8)

Here, C2 = 58.5 and C3 = 29.3 are the same constants as in SSIM.

Smoothness energy. In the absence of other constraints, we want
the optimization to favor affine functions. This is accomplished by
minimizing the thin-plate spline (TPS) energy independently on
components vx and vy of vector field v:

ETPS(p) = TPS
(
vx(p)

)
+TPS

(
vy(p)

)
, where (9)

TPS
(
vx(p)

)
=
(

∂ 2vx(p)
∂ px2

)2
+2
(

∂ 2vx(p)
∂ px py

)2
+
(

∂ 2vx(p)
∂ py2

)2
, (10)

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

4 • Liao et al.

Fig. 5. The thin-plate-spline (TPS) term encourages smoothness of the
correspondence vector field v defined over the halfway domain.

and analogously for TPS
(
vy(p)

)
(see Figure 5). The TPS energy

is defined over the halfway domain grid, and is discretized as in
Finch et al. [2011].

UI energy. To resolve ambiguities and provide artistic control,
we allow the user to manually specify pairs of corresponding
points u0

i and u1
i in images I0 and I1. Let ūi = (u0

i + u1
i)/2 and

vui = (u1
i − u0

i)/2. The correspondence between u0
i and u1

i forces
the halfway vector v(ūi) to equal vui .

However, ūi does not in general lie exactly at a gridpoint p ∈ Ω.
Thus, we enforce soft constraints on the four nearest neighbors
pi1, pi2, pi3, pi4 of ūi. Each soft constraint is weighted by the
corresponding bilinear weight b(pi j, ūi) such that

4

∑
j=1

b(pi j, ūi) pi j = ūi. (11)

Therefore, the UI energy is

EUI(p) =
1

wh ∑
i, j | pi j=p

b(pi j, ūi)
∥∥v(pi j)− vui

∥∥2
. (12)

Thus, by definition, EUI(p) is zero for gridpoints that are not in the
neighborhood of any constraint point ūu.

4.2 Optimization

We use a coarse-to-fine minimization approach to accelerate the
optimization of the vector field v (and hopefully avoid local minima).

Multiresolution solver. We first build image pyramids where the
coarsest level has a resolution of 8×8 or 16×16 pixels. Proceeding
coarse-to-fine, we run an iterative relaxation on progressively finer
halfway domain grids. After each level is brought to convergence,
the solved vector field v is upsampled and used as starting point for
the next finer level. We continue until reaching the desired resolution
for the halfway domain grid.

Iterative optimization at each level. At each gridpoint p in
the current level, we estimate the direction of the energy gradient
relative to v(p) using finite differences. We then use golden-section
search [Kiefer 1953] to find the new optimal value for v(p) along
this search direction. To prevent foldovers, we restrict the search
interval so that φ0(p) and φ1(p) remain inside their respective
1-rings; the maximum displacement is computed as in figure 6.
We repeat the optimization for all points p until convergence.

For the optimization at the coarsest level, we omit the SIM
energy term; this initial coarse solution is based solely on the user
correspondence points and TPS energy.

Fig. 6. During line search optimization of v(p), we compute bounds on the
search interval to constrain maps φ0 and φ1 to remain bijections.

Fig. 7. Minimizing the combination of SIM, TPS, and UI energy terms
handles rotation, translation, and boundary deformation. For these two
examples, we specified four and one user correspondence points respectively.

As shown in figure 7, even with very few UI correspondence points,
the optimization is able to robustly find good correspondences in
the presence of affine transformations and shape deformations.

4.3 GPU implementation details

To benefit from the huge processing power of modern GPUs,
the optimization process should be made as parallel as possible.
Unfortunately, not all gridpoints can be optimized independently.
The foldover prevention strategy shown in figure 6 requires that
values in a 1-ring around p remain constant while v(p) changes.
Worse still, since neighborhoods N0 and N1 in the SIM function (4)
depend on a 2-ring of values around p, all of these must be held
constant while moving v(p). We have found that although we
must indeed respect the parallelism constraint imposed by the
foldover prevention, we can loosen the SIM restriction. In theory,
this prevents us from guaranteeing that the energy is reduced at each
parallel iteration. However, in practice the optimization converges,
and the added parallelism speeds up the process by 15% to 130% in
our tests, depending on grid resolution.

We therefore divide the input grid into blocks with 64 × 16
gridpoints, each to be processed by a CUDA block with 32× 8
threads. Within each block, we partition the points into the 4 groups
with 32×8 points that satisfy the aforementioned 1-ring minimum
separation. The points in each group are optimized in parallel,
according to the algorithm in section 4.2. Since there can be no
synchronization between independent CUDA blocks, the 64×16
gridpoint blocks are separated by gaps (4 gridpoints wide) to avoid
conflicts arising from the SIM restriction. Points in these gaps are
processed by subsequent invocations, which use gaps at different
offsets. (Not all points are optimized the same number of times, but
we found that this does not significantly affect accuracy.)

Whenever v(p) is modified, it is necessary to update ESIM(q) for
all q in its 5× 5 neighborhood. Updating these 25 values from
scratch would involve as many as (52 − 1)× 52 = 600 memory
accesses per thread. We instead update these incrementally. The
key is to keep the means, variances, and covariance terms for
each point as separate value terms. When v(p) is modified, the

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Automating Image Morphing using Structural Similarity on a Halfway Domain • 5

responsible thread uses fast atomic operations to incrementally
update the affected terms for all neighbors q. After a fast intra-
block synchronization, each thread recomputes its own ESIM(p)
from up-to-date terms.

We optimize the coarsest level (64 to 256 gridpoints) on the CPU
using a direct solver. For each finer level, the GPU relaxation solver
iterates until no more v(p) changes. Each golden-section search
usually terminates in fewer than 10 iterations (given a search interval
of ε = 0.001).

5. QUADRATIC MOTION PATHS

Given the results of the optimization, the morphing sequence
moves each point p from its position q0 = φ0(p) in image I0 to
its position q1 = φ1(p) in image I1, as a parameter α spans the time
interval [0,1]. The typical approach is to use linear interpolation:

qα = p+(2α−1)v(p). (13)

Unfortunately, when considered as a whole, linear motion paths can
lead to undesirable (often non-monotonic) deformations, even when
a global rotation exists (see figure 8). To reduce this problem, we
instead define quadratic motion paths.

At each point p, we solve for an additional vector w(p) that defines
the control point b1/2 = p+2w(p) for a quadratic Bézier path:

qα = (1−α)
(
(1−α)q0 +αb1/2

)
+α

(
(1−α)b1/2 +αq1

)
(14)

= p+(2α−1)v(p)+4α(1−α)w(p). (15)

The idea is to use these additional degrees of freedom to improve
the morph quality. The path still goes through q0 and q1, and it
interpolates q1/2 = p+w(p).

Computing w(p). We select w(p) by minimizing the sum of two
energy terms. The first term, ED(w), guides the local deformations
halfway through the animation to match the halfway rotation and
scale between the source and target images. The second term, ER(w),
encourages points that are at rest (i.e., for which v(p)≈ 0) to remain
at rest during the animation.

I0 linear quadratic I1

Fig. 8. These examples show that rotating regions shrink when using linear
motion paths. With quadratic paths, the shape is better preserved throughout
the morph. The red arrows show the path followed by a selected point.

Fig. 9. An additional vector w(p) at each halfway pixel defines a quadratic
motion path to reduce map deformation during the morph.

Let points pi, p j be a pair of (either horizontal or vertical) neighbors
in the halfway domain Ω. Define the vectors connecting them in
images I0 and I1:

d0(pi, p j) = φ0(p j)−φ0(pi) (16)

= p j− pi−
(
v(p j)− v(pi)

)
, (17)

d1(pi, p j) = p j− pi +
(
v(p j)− v(pi)

)
. (18)

Halfway through the animation, we want the corresponding vectors
to match the halfway rotation and exponential scaling between
vectors d0 and d1:

d̃1/2(pi, p j) =
√∥∥d0(pi, p j)

∥∥∥∥d1(pi, p j)
∥∥ d̂s(pi, p j), (19)

with ds(pi, p j) = d̂1(pi, p j)+ d̂2(pi, p j) and û = u/‖u‖. (20)

The halfway vector we actually obtain from the quadratic path is

d1/2(pi, p j) = p j− pi +(w(p j)−w(pi)). (21)

Therefore we set the deformation energy term to

ED(w) = ∑
pi,p j

∥∥d1/2(pi, p j)− d̃1/2(pi, p j)
∥∥2
. (22)

For the resting energy term, we use

ER(w) = ∑
pi s.t. ‖v(pi)‖<1

(
1−
∥∥v(pi)

∥∥) ∥∥w(pi)
∥∥2
. (23)

Thus we compute the vectors w(p) that minimize the energy

E(w) = ED(w)+βER(w). (24)

This linear least squares energy has a unique minimum if there
are any resting correspondences. Otherwise we simply set the
mean w̄ = 0. We use β = 1 for all examples in this paper.

As shown in the examples in figure 8, using quadratic motion paths
that minimize neighborhood deformation in the halfway image helps
preserve shape throughout the morph, whereas linear paths often
shrink then grow any rotating region.

6. DIRECT PIXEL EVALUATION FOR RENDERING

Inspired by the work of Yang et al. [2011], we propose a simple
and efficient backward-mapping algorithm to render intermediate
frames within a morph. Our method does not involve mesh
rasterization. Instead, each pixel in an intermediate image is
evaluated independently. Moreover, unlike mesh-based approaches,
our method is able to produce images that cover the entire domain
of the input images, as shown in figure 10.

To simplify the presentation, we begin by considering the case of
linear paths. The goal is to invert equation (13) so that, given a point
qα in the intermediate image Iα , we find the corresponding point p

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

6 • Liao et al.

Fig. 10. Visualization of the halfway domain grid overlaid on the two
input images. With traditional rasterization, image pixels beyond the domain
boundary are left uncovered (as shown in blue). Our iterative pixel evaluation
approach fills those pixels with plausible values from the input images.

Fig. 11. In the presence of large rotations, omitting damping in the direct
iterative solver may lead to rendering artifacts; the original images are not
reproduced at the morph extremes because the solver fails to converge to the
correct halfway point. (Compare with figure 8.)

in the halfway domain Ω. Having obtained p, we use the functions
φ0 and φ1 to perform sampling lookups into images I0 and I1. The
algorithm can be summarized as follows:

For each morph image Iα :

(1) We render a single quadrilateral over the whole image domain.

(2) In the pixel shader, for pixel qα , we perform an iterative search
to find the corresponding point p.

(3) We sample I0 at φ0(p) and I1 at φ1(p) using bicubic filtering.

(4) We blend Iα (p) = (1−α)I0(φ0(p))+(α)I1(φ1(p)).

The main challenge is to find point p in step (2). It is obtained using
the following iterative search:

p(0) = qα , (25)

p(i+1) = qα − (2α−1) v
(

p(i)
)
. (26)

The same approach works with quadratic motion paths, except that
we instead invert equation (15):

p(0) = qα , (27)

p(i+1) = qα − (2α−1)v
(

p(i)
)
−4α(1−α)w

(
p(i)
)
. (28)

Because the map is smooth, the iterative search generally converges
after just a few (e.g., 3–5) iterations in both the linear and quadratic
cases. One difficulty we have encountered is that when the map
includes large rotations, the iterative search may cycle and thus fail
to converge (figure 11). We avoid this by damping the vector values

during the iterative process:

p(0) = qα , (29)

v(0) = v(p(0)), (30)

p(i+1) = qα − (2α−1) v(i), (31)

v(i+1) = (η)v
(

p(i+1))+(1−η)v(i). (32)

The same modification also applies to the quadratic path case. We
set the exponential smoothing factor η = 0.8 in all results.

The direct pixel evaluation algorithm is implemented on the GPU
and is extremely efficient, as reported in section 9. One exciting
benefit of the direct evaluation approach is that it can be used to
immediately render a morphing image over an arbitrary surface.
Unlike conventional approaches, this immediate rendering offers
high-quality filtering and does not require rasterization into a
temporary texture buffer.

7. POISSON-EXTENDED IMAGE BOUNDARIES

Often, the optimized mapping computed in Section 4.2 appropriately
maps some regions of I0 outside the domain of I1 (or vice-versa).
For example, in figure 12 the red point in I0 is mapped outside I1.
When morphing, the color sampled from I1 is therefore undefined.
To address this, we extend each image by transferring content from
the other image using the halfway parameterization. We seamlessly
complete and stitch the resulting extended image using a gradient-
domain least-squares optimization (i.e., a Poisson equation).

Pixel transport. We construct for image I0 an extended version Ī0,
e.g., with 10% extra pixels in each direction. The interior (in-
bounds) region of Ī0 is copied directly from I0, and is never
modified. To transport content into the extended region of Ī0,
we evaluate a pixel shader with the following algorithm. For
each pixel q0 ∈ Ω̄0, we seek its domain point p (i.e., satisfying
φ0(p) = q0) to find its corresponding point q1 = φ1(p) ∈ Ω1. The
search for p is solved using almost the same iterative algorithm
as in the direct pixel evaluation of section 6. The new difficulty
is that q0 lies in the extended region, so after the initialization
p(0) = q0, the value v(p(0)) is undefined. Nonetheless, we run the
iterative algorithm where v(·) is evaluated using “clamped-to-border”
sampling, which corresponds to a piecewise constant extension of v.
After the iterative search, if the point q1(p) = p+ v(p) lies outside
image I1, which is not uncommon, we assign pixel q0 an undefined
value. Otherwise, we sample the color in I1.

Completion using gradient-domain optimization. In the re-
sulting extended region, for each pair of adjacent pixels we compute
their finite difference. This difference is set to zero if either pixel
is undefined, or if one of the pixels is on the perimeter of I0. We
optimize the pixel colors in the extended region of Ī0 to match these
desired differences while constraining the colors on the boundary
of I0 (as Dirichlet constraints) [Pérez et al. 2003].

We apply a similar process to seamlessly extend image I1 to Ī1 using
colors transported from I0. The effect is that the extended region of
each image captures detail from the other image while seamlessly
matching the appearance of its own inner region. Figure 13 shows an
example result. Because the right image is contained within the left
image, its extension receives detail transported from the left image.
When there is no correspondence, as is the case for the extended

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Automating Image Morphing using Structural Similarity on a Halfway Domain • 7

Fig. 12. The fact that a halfway point p may map beyond the extent of one
image lets us extrapolate outside the image boundary.

Fig. 13. We extend the image domains beyond their original boundaries
(shown by inset rectangles), by transporting pixel values across the images
using the extrapolated map, and solving a gradient-domain optimization to
obtain a seamless reconstruction.

Fig. 14. The interactive morphing system shows the input images, the
halfway morph, and an oscillating morph animation.

region of the left image, the gradient-domain optimization yields a
diffuse result.

Finally, we perform morphing using the extended images, without
any special treatment for boundaries (except clamp-to-border in
the unlikely case that the maps φ0 or φ1 were to reach outside the
extended images).

8. USER INTERFACE

Our prototype system provides a small set of views and UI controls
that allow the user to interactively guide the optimization towards
the desired morph effect. A few point correspondence points are
typically sufficient to properly align important features to each
other. The correspondences between all remaining pixels are found
automatically.

Figure 14 shows our interface with an example image pair. The two
panes at the top show the input images with overlaid correspondence
points. Mouse operations allow the user to quickly add, move, and
remove correspondence points on these images. The bottom-left
pane shows the current halfway image. Generally, if this image
has no visible ghosting near corresponding object boundaries, the
optimizer has achieved a satisfactory result. The user is also able to
select correspondence points directly on the intermediate image by
clicking the first image position and dragging it to the second image
position. Please refer to the accompanying video for a demonstration.
Finally, the bottom-right pane displays a morphing animation. The
correspondence optimization runs in the background, and the bottom
two panes are updated interactively as the optimization progresses.
The coarse-to-fine optimization is immediately restarted when the
user manipulates the correspondence points. This makes the process
of producing convincing morphs fast and intuitive.

9. RESULTS

All our results use the same default parameters in the optimization
objective. There is no user intervention beyond the specified pairs
of correspondence points, shown in red in all the figures.

Figure 15 compares our approach to several representative morphing
techniques using examples extracted from the corresponding papers.
Input images with overlaid correspondence points and annotations
required by the previous work are shown on the far left and far
right. The second image in each row shows the result of the related
work, while the third image shows our results. Some traditional
techniques require significantly more user guidance than our method
to achieve nearly comparable results in these examples [Smythe
1990; Lee et al. 1996; Choi and Hwang 2011; Wu and Liu 2013].
Other techniques are targeted at more specific problems and
would be unable to properly handle most of the general examples
shown in figure 16. These include temporal upsampling of similar
frames [Mahajan et al. 2009], texture-synthesis-based discontinuous
morphs [Shechtman et al. 2010], and methods specific to human
faces [Yang et al. 2012]. Gao and Sederberg [1998] explore a
similar semi-automatic method, but aimed at images with similar
colors. Our approach gives excellent results in these cases and our
similarity energy lets us handle more generic morphs of scenes with
different colors.

Figure 16 shows several results of our approach. The input images
are shown on the far left and far right along with overlaid
correspondence points used during the morphing process. Note that
the top two examples require no correspondence points, providing
an accurate result right away. In each row, the three central images
show the progression of the morph. These results demonstrate the
algorithm’s ability to handle different challenging scenarios.

Table I reports the grid resolution and number of correspondence
points for each image in figures 15 and 16. These grid resolutions
suffice to achieve an accurate morph. The table also shows a
timing breakdown of the different stages of our GPU optimization

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

8 • Liao et al.

Fig. 16. Example morphing sequences. User-drawn correspondence points are shown in red over the input images I0 (left) and I1 (right). Caricature by Court
Jones.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

http://www.courtjones.com/
http://www.courtjones.com/

Automating Image Morphing using Structural Similarity on a Halfway Domain • 9

Fig. 17. Given the input images at left and right, the three middle images show halfway morphs obtained with various subsets of control points (no control
points, red points only, and both red and green points). Ghosting due to misalignment is progressively reduced.

Fig. 18. Blending artifacts may occur on disoccluded regions, as shown in this rotating head example.

I0 I0.5 without masks I0.5 with masks I1

Fig. 19. By introducing a set of “ignore” masks (shown in red), we can avoid undesirable distortions caused by false matching of dissimilar regions.

algorithm. The correspondence optimization (Solve) requires about
one to seven seconds, depending on the dataset. Even when using
dense grids with over half a million points, the optimization takes
under seven seconds, which is reasonable for our interactive system.
Because the system shows mapping results as the optimization
progresses, the user does not need to wait until the optimization
completes to see the effect of newly added correspondence points.
The generation of quadratic paths (Path) and the computation of
the Poisson-extended image boundaries (Bndry) take approximately
a couple of seconds. Since these do not change the direct pixel
correspondences, they are not as important during correspondence
point manipulation. Nonetheless, if the system is idle and waiting
for user input after correspondence minimization, it proceeds to
perform these computations to provide a complete result.

Figure 17 shows how the gradual insertion of additional correspon-
dence points progressively improves the quality of the morphing
result in complex scenarios.

Our approach does not optimally handle cases where the ideal
correspondence is discontinuous due to occlusion. Figure 18 shows
such an example, where disoccluded regions on the hair of the
subject result in blending artifacts with the background.

10. EXTENSIONS

A limitation of our method is that some complex occlusion cases
that involve motion parallax cannot be handled properly with
the continuous halfway parameterization that we propose. Some

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

10 • Liao et al.

I0 I0.5 without segmentation I0.5 with segmentation I1

Fig. 20. Segmenting a morph into layers (ball, player, and background) improves results in cases of disocclusion and motion parallax.

I0 (photo) I1 (caricature) I0 shape + I1 colors I0 colors + I1 shape Extrapolated I1
(linear)

Extrapolated I1
(quadratic)

Fig. 21. Examples of decoupling shape and color interpolation during a morph and extrapolating the motion paths. Caricature by Court Jones.

Table I. Statistics for the morphs in figures 15 and 16.

Dataset Processing times* (sec)

Fig Image Resolution Points Solve Path Bndry Total

15 boy 600×480 2 2.5 0.6 0.6 3.7
man-cat 475×400 12 6.6 2.0 2.0 10.6
woman 160×160 4 1.4 0.7 0.6 2.7
girl 270×270 0 1.8 1.0 1.0 3.8
ball 306×262 10 3.2 0.9 1.0 5.1
model 97×123 1 2.5 0.4 0.5 3.4
tv 528×396 8 3.3 1.7 1.9 6.9
bush-obama 154×208 4 1.8 0.7 0.8 3.3

16 butterfly 306×248 0 2.0 1.2 1.1 4.3
flower 600×480 0 2.3 2.2 2.4 6.9
cat-lion 524×800 11 4.6 2.7 4.3 11.6
monalisa 440×440 2 2.6 1.2 1.8 5.6
man-lizard 720×540 13 6.3 2.3 2.9 11.5
caricature 400×448 3 4.7 1.8 2.0 8.5
lake 462×342 11 4.9 1.5 1.5 7.9

*Hardware: NVIDIA GTX 680 on Intel Core i7 @ 3.4GHz with 8GB RAM.

examples are shown in Figures 1 and 2 of our supplementary
material. We introduce extensions that allow our method to address
these particularly challenging examples and further increase the
range of supported morphing effects.

Ignore mask. Our optimization tries to find the best correspon-
dences across the entire input image domains. The mapping between
regions that are not important for the desired morph effect (e.g., the

background) may have a bad influence on regions that are key (e.g.,
the foreground). To mitigate this problem, we allow users to de-
lineate regions that will be ignored by the similarity energy term.
Pixels flagged by the ignore mask do not enter into the computation
of the mean, variance, and covariance between neighborhoods in
equation (6). Figure 19 shows an example with this issue, and the
improvement achieved with the relaxed constraints due to the ignore
mask.

Layer segmentation. We extend our framework to handle a
more general class of image transformations, such as complex
disocclusions and motion with parallax (see figure 20). To that
end, our interface allows the user quickly tag different layers using
intelligent scissors [Mortensen and Barrett 1995]. These layers are
processed independently and then composited (respecting their
depth order). When processing each layer, pixels beyond its
boundary are also flagged with an ignore mask. Intermediate image
pixels that do not overlap with any of the layers are filled in using
the same gradient-domain optimization process used for the Poisson-
extended image boundaries. In the example of figure 20, independent
vector fields are computed for the ball, goalkeeper, and background,
leading to improved results. The impact on performance is small
since the expensive similarity term does not need to be computed
for masked regions.

Extrapolating caricatures using quadratic motion paths. We
can use our technique to extrapolate the morphing sequence past
the original input images in either direction. This is particularly
appealing when morphing from a photograph to a caricature of that
photograph, as shown in the two rightmost images of figure 21.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

http://www.courtjones.com/

Automating Image Morphing using Structural Similarity on a Halfway Domain • 11

I0 Other method Our method I1

[Smythe 1990]

[Lee et al. 1996]

[Gao and Sederberg 1998]

[Mahajan et al. 2009]

[Shechtman et al. 2010]

[Choi and Hwang 2011]

[Yang et al. 2012]

[Wu and Liu 2013]
Fig. 15. Comparison with morphs presented in prior methods. Input
images I0, I1 are overlaid with the additional input (e.g., grids, points) used
in each method, as well as the sparse correspondence points (in red) used in
our method.

Note that by using our novel quadratic motion paths that minimize
deformations during the morph, local distortions in the resulting
image are greatly reduced when compared to linear motion paths.

Decoupling shape and color transitions. The fine-grained
matching provided by our approach allows us to effectively combine
colors from one image with the shape of the other image without
significant artifacts. The two middle images in figure 21 show the
combinations of the shape from a photograph with painted detail
from the caricature and vice-versa.

11. CONCLUSIONS AND FUTURE WORK

In this work, we presented a variety of contributions to the well-
studied problem of generating high-quality morphs between two
images. the use of a halfway parameterization for establishing
correspondences provides a way to handle simple occlusions without
compromising the optimization process. Handling more complex
occlusions and rotations remains an area of future work. Our
similarity metric allows neighborhoods with the same structure to be
matched, even those with distinct color distributions and geometric
distortions. An interactive user interface, powered by an efficient
GPU implementation of a coarse-to-fine optimization algorithm,
allows artists to quickly specify desired point-correspondences
to achieve the desired morphs. A quadratic path optimization
reduces the distortions that arise from linear paths during the
animation sequence. Finally, we introduced a fast, per-pixel iterative
search algorithm for inverting the mapping that does not require
mesh rasterization and, in conjunction with our joint Poisson
boundary extension, enables out-of-bounds matches when input
image domains do not correspond exactly.

As future work, in addition to handling more complex occlusions,
we would like to explore the entire space of color and motion paths,
perhaps even allowing explicit user control with a stroke-based
interface. We would also like to consider extending this technique
to morphing between video sequences.

Acknowledgments

NVIDIA Corporation has generously donated the GPUs used in this
project. The project was partly supported by Hong Kong GRF grants
#619509 and #618513. The caricatures in figures 1, 16, and 21 are
courtesy of Court Jones (http://www.courtjones.com/), who
retains their copyright.

REFERENCES

BAKER, S., SCHARSTEIN, D., LEWIS, J. P., ROTH, S., BLACK,
M. J., AND SZELISKI, R. 2011. A database and evaluation
methodology for optical flow. International Journal of Computer
Vision 92, 1, 1–31.

BELHUMEUR, P. N. AND MUMFORD, D. 1992. A bayesian
treatment of the stereo correspondence problem using half-
occluded regions. In IEEE Conference on Computer Vision and
Pattern Recognition. 506–512.

BEYMER, D. 1996. Feature correspondence by interleaving shape
and texture computations. In IEEE Conference on Computer
Vision and Pattern Recognition. 921–928.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

http://www.courtjones.com/

12 • Liao et al.

BICHSEL, M. 1996. Automatic interpolation and recognition of face
images by morphing. In International Conference on Automatic
Face and Gesture Recognition. 128–135.

CHOI, D. W. AND HWANG, C. J. 2011. Image morphing
using mass-spring system. In Proceedings of the International
Conference on Computer Graphics and Virtual Reality. 156–159.

COVELL, M. 1996. Eigen-points: control-point location using
principal component analyses. In International Conference on
Automatic Face and Gesture Recognition. 122–127.

DARABI, S., SHECHTMAN, E., BARNES, C., GOLDMAN, D. B.,
AND SEN, P. 2012. Image melding: combining inconsistent
images using patch-based synthesis. ACM Transactions on
Graphics (Proceedings of ACM SIGGRAPH 2012) 31, 4 (July),
82.

FINCH, M., SNYDER, J., AND HOPPE, H. 2011. Freeform vector
graphics with controlled thin-plate splines. ACM Transactions
on Graphics (Proceedings of ACM SIGGRAPH Asia 2011) 30, 6,
166.

GAO, P. AND SEDERBERG, T. W. 1998. A work minimization
approach to image morphing. The Visual Computer 14, 8-9,
390–400.

GOMES, J., DARSA, L., COSTA, B., AND VELHO, L. 1999.
Warping and Morphing of Graphical Objects. Morgan Kaufmann.

KANG, S. B., UYTTENDAELE, M., WINDER, S., AND SZELISKI,
R. 2003. High dynamic range video. ACM Transactions on
Graphics (Proceedings of ACM SIGGRAPH 2003) 22, 3, 319–
325.

KASS, M., WITKIN, A., AND TERZOPOULOS, D. 1988. Snakes:
Active contour models. International Journal of Computer
Vision 1, 4, 321–331.

KEMELMACHER-SHLIZERMAN, I., SHECHTMAN, E., GARG, R.,
AND SEITZ, S. M. 2011. Exploring photobios. ACM Transactions
on Graphics (Proceedings of ACM SIGGRAPH 2011) 30, 4, 61.

KIEFER, J. 1953. Sequential minimax search for a maximum. In
Proceedings of the American Mathematical Society 4 (3). 502–
506.

LEE, S., CHWA, K.-Y., HAHN, J. K., AND SHIN, S. Y. 1996. Image
morphing using deformation techniques. Journal of Visualization
and Computer Animation 7, 1, 3–23.

LIU, Z., LIU, C., SHUM, H., AND YU, Y. 2002. Pattern-based
texture metamorphosis. In Pacific Conference on Computer
Graphics and Applications. 184–191.

MAHAJAN, D., HUANG, F.-C., MATUSIK, W., RAMAMOORTHI,
R., AND BELHUMEUR, P. 2009. Moving gradients: A path-based
method for plausible image interpolation. ACM Transactions on
Graphics (Proceedings of ACM SIGGRAPH 2009) 28, 3 (July),
42.

MATUSIK, W., ZWICKER, M., AND DURAND, F. 2005. Tex-
ture design using a simplicial complex of morphable textures.
ACM Transactions on Graphics (Proceedings of ACM SIG-
GRAPH 2005) 24, 3, 787–794.

MORTENSEN, E. AND BARRETT, W. 1995. Intelligent scissors for
image composition. In Proceedings of ACM SIGGRAPH 1995.
191–198.

NISHITA, T., FUJII, T., AND NAKAMAE, E. 1993. Metamorphosis
using bezier clipping. In Pacific Conference on Computer
Graphics and Applications. 162–173.

PÉREZ, P., GANGNET, M., AND BLAKE, A. 2003. Poisson image
editing. ACM Transactions on Graphics (Proceedings of ACM
SIGGRAPH 2003) 22, 3 (July), 313–318.

ROSSIGNAC, J. AND VINACUA, Á. 2011. Steady affine motions
and morphs. ACM Transactions on Graphics 30, 5, 116.

RUZON, M. AND TOMASI, C. 2001. Edge, junction, and corner
detection using color distributions. IEEE Transactions on Pattern
Analysis and Machine Intelligence 23, 11, 1281–1295.

SCHARSTEIN, D. AND SZELISKI, R. 2002. A taxonomy and
evaluation of dense two-frame stereo correspondence algorithms.
International Journal of Computer Vision 47, 1, 7–42.

SHECHTMAN, E., RAV-ACHA, A., IRANI, M., AND SEITZ, S. M.
2010. Regenerative morphing. In IEEE Conference on Computer
Vision and Pattern Recognition. 615–622.

SHUM, H., KANG, S., AND CHAN, S. 2003. Survey of image-based
representations and compression techniques. IEEE Transactions
on Circuits and Systems for Video Technology 13, 11, 1020–1037.

SMYTHE, D. B. 1990. A two-pass mesh warping alogrithm for
object transformation and image interpolation. Tech. Rep. 1030,
ILM.

WANG, Z., BOVIK, A., SHEIKH, H., AND SIMONCELLI, E. 2004.
Image quality assessment: From error visibility to structural
similarity. IEEE Transactions on Image Processing 13, 4, 600–
612.

WOLBERG, G. 1990. Digital Image Warping. IEEE Computer
Society Press.

WOLBERG, G. 1998. Image morphing: a survey. The Visual
Computer 14, 8, 360–372.

WU, E. AND LIU, F. 2013. Robust image metamorphosis immune
from ghost and blur. The Visual Computer 29, 4, 311–321.

YANG, F., SHECHTMAN, E., WANG, J., BOURDEV, L., AND
METAXAS, D. 2012. Face morphing using 3d-aware appearance
optimization. In Graphics Interface. 93–99.

YANG, L., TSE, Y.-C., SANDER, P. V., LAWRENCE, J. D., NEHAB,
D., HOPPE, H., AND WILKINS, C. L. 2011. Image-based
bidirectional scene reprojection. ACM Transactions on Graphics
(Proceedings of ACM SIGGRAPH Asia 2011) 30, 6, 150.

YÜCER, K., JACOBSON, A., HORNUNG, A., AND SORKINE, O.
2012. Transfusive image manipulation. ACM Transactions on
Graphics (Proceedings of ACM SIGGRAPH Asia 2012) 31, 6
(Nov.), 176.

ZHANG, Y. 1996. A fuzzy approach to digital image warping. IEEE
Computer Graphics and Applications 16, 4, 34–41.

ZITOVA, B. AND FLUSSER, J. 2003. Image registration methods: a
survey. Image and Vision Computing 21, 11, 977–1000.

Received July 2013; accepted ? 2014

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

