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Abstract

Processing spherical images is challenging. Because no spherical
parameterization is globally uniform, an accurate solver must ac-
count for the spatially varying metric. We present the first efficient
metric-aware solver for Laplacian processing of spherical data. Our
approach builds on the commonly used equirectangular parameter-
ization, which provides differentiability, axial symmetry, and grid
sampling. Crucially, axial symmetry lets us discretize the Laplacian
operator just once per grid row. One difficulty is that anisotropy
near the poles leads to a poorly conditioned system. Our solution is
to construct an adapted hierarchy of finite elements, adjusted at the
poles to maintain derivative continuity, and selectively coarsened to
bound element anisotropy. The resulting elements are nested both
within and across resolution levels. A streaming multigrid solver
over this hierarchy achieves excellent convergence rate and scales
to huge images. We demonstrate applications in reaction-diffusion
texture synthesis and panorama stitching and sharpening.
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1 Introduction

Spherical images are often used to represent photographed or ren-
dered environments. Many common formats are based on the
equirectangular map, which parameterizes ray directions by zenith
and azimuth angles (Figure 1). This simple representation offers
a number of advantages. Because the map is cylindrical, lines of
constant inclination in the spherical scene are mapped to horizon-
tal lines in the parametric domain, i.e. the map has axial symmetry.
In addition, the map has a simple analytic description that is glob-
ally defined and infinitely differentiable (except at the poles). And
unlike the conformal Mercator projection, the equirectangular map
has a compact domain, which can be discretized using a regular grid
of sample points or finite elements.

The equirectangular representation does have drawbacks. One lim-
itation is that a uniform grid in the parametric domain oversamples
the sphere near the poles. Fortunately, the situation is not so dire
because no region is undersampled; the nonuniformity only con-
tributes an over-abundance of samples near the poles. Thus, as long
as the spherical signal is properly bandlimited during analysis and
discretization, the reconstruction can have uniform appearance and
be free of aliasing artifacts.

The more significant obstacle is that the distortion near the poles
complicates signal processing. Indeed, taking the metric into ac-

Figure 1: Equirectangular representation of a spherical panorama.

Figure 2: Our adapted grid hierarchy is regularly spaced along
meridians but adaptively spaced across circles of latitude. The mul-
tiresolution refinement (left-to-right) supports a set of nested finite
elements, which enable an efficient, metric-aware multigrid solver.

count when constructing the Laplace-Beltrami operator (the exten-
sion of the Laplacian to non-Euclidean domains) results in a poorly
conditioned system. For applications that require the solution of a
Poisson-like system (e.g. diffusion, wave-propagation, gradient-
domain image processing, etc.), this leads to unacceptably slow
convergence, even with conventional multigrid techniques.

One can try to address this convergence problem by using a spher-
ical parameterization with bounded distortion, but this presents ad-
ditional difficulties. There are two strategies. (1) The first is to
assume that the distortion is small enough, and define a linear sys-
tem that is metric-unaware by assigning equal weight to each el-
ement of the parameterization; unfortunately the inaccuracies lead
to undesirable artifacts for common signal-processing applications.
(2) The other strategy is to define a metric-aware system, relying
on the bounded distortion to provide good conditioning. However,
a critical aspect is that the geometry of element neighborhoods is
spatially varying, so it is necessary to compute and store the coef-
ficient masks of the discretized Laplace-Beltrami operator at each
grid node. Performing this over high-resolution grids is unwieldy.

In this work we introduce a new representation that builds on the
simple analytic description of the equirectangular map, thereby in-
heriting the advantages of differentiability, axial symmetry, and reg-
ularity. To address the poor conditioning due to the parameteric
distortion at the poles, we adaptively refine the domain grid, gener-
ating spherical elements with bounded anisotropy (Figure 2).

By retaining the underlying grid structure, we obtain finite-element
basis functions that nest within and across the multiresolution lev-
els. Thus, the representation is ideally suited for streaming multi-
grid processing. Additionally, thanks to the axial symmetry of the
adapted equirectangular grid, we need only compute and store the
mask coefficients once per row of the domain grid — a big savings
in both space and time. Combining these benefits, we present the
first spherical solver that is both efficient and metric-aware.



We demonstrate the new representation and multigrid solver using
two quite different applications: reaction-diffusion simulation (for
texture synthesis) and spherical gradient-domain image processing
(for panorama stitching and enhancement). We envision that the ef-
ficient spherical solver may also provide a contribution to other dis-
ciplines, where the accurate solution to a spherical Poisson equation
allows for the modeling of phenomena such as weather patterns,
electromagnetic potentials, and plate tectonics.

2 Related Work

Spherical Parameterization The challenge of effectively repre-
senting functions over a spherical domain has been well studied
in computer graphics. Many approaches define a partition of the
sphere by recursively subdividing the faces of platonic solids, e.g.,
cubes/octahedra [Miller and Hoffman 1984; Górski et al. 2005;
Wan et al. 2007; Fu et al. 2009] and icosahedra [Fekete 1990;
Schröder and Sweldens 1995a]. The use of a platonic solid as a base
mesh lets the final spherical partition inherit the associated symme-
tries, and the subdivision of the base faces ensures the topological
regularity of the final facets.

Spherical Processing Metric-aware spherical processing is gen-
erally difficult. Górski et al. [2005] use the isolatitude property
of HEALPix samples (also present in the isocube map [Wan et al.
2007]) to achieve efficient integration over the sphere, thus enabling
spherical harmonic transforms. Schröder and Sweldens [1995b]
demonstrate smoothing and sharpening of environment maps using
spherical wavelets; they compute local integrals using numerical
quadrature. Laplacian processing requires the evaluation of deriva-
tives over neighborhoods of elements, and the geometry of these
neighborhoods generally varies. Kazhdan et al. [2010] adapt a so-
called TOAST parameterization to perform Laplacian processing of
spherical images, but resort to a metric-unaware solver.

Metric-Aware Signal Processing Turk [1991] computes
reaction-diffusion over an irregular sampling of a triangle mesh,
adjusting diffusion based on induced Voronoi regions. Witkin
and Kass [1991] simulate reaction-diffusion over a surface patch
by accounting for the parameterization Jacobian in the diffusion
algorithm. Similarly, Stam [2003] simulates fluid flow over an
arbitrary subdivision surface by computing the spatially varying
metric on the subdivided mesh. Texture synthesis schemes such
as [Ying et al. 2001; Lefebvre and Hoppe 2006] use the varying
metric to create predistorted texture that looks correct when
mapped on the surface.

Multigrid Solvers It is well known that anisotropy leads to poor
multigrid convergence [Briggs et al. 2000]. If the anisotropy is
axis-aligned and spatially homogeneous, an effective solution is
semicoarsening, whereby the grid is only coarsened in one direc-
tion [Schaffer 1998]. Our adapted equirectangular grid is related to
semicoarsening in that we coarsen the rows independently. How-
ever, our approach is more general because we apply different
coarsening to different rows, resulting in a domain that is not re-
stricted to have a tensor-product structure.

Algebraic multigrid [Stüben 2001] is a more general framework for
handling anisotropy. Its adaptive clustering leads to irregular grids
and thus requires storing matrices explicitly. In comparison, our
multigrid algorithm maintains the regularity of the system and does
not require constructing the system matrices.

3 Motivation and Approach

Spherical Poisson Problem Many interesting image process-
ing operations can be expressed in the gradient domain, includ-
ing image stitching, dynamic range reduction, removal of shadows
or reflections, and gradient-based sharpening [Agrawal and Raskar
2007]. The basic strategy is to extract gradient fields from one or
more images, modify the gradient values, and find the new image
that best approximates the desired gradients.

Using the notation of [Kazhdan et al. 2010], in the spherical setting
the user provides a vector field Ṽ : S2→ T S2 specifying the desired
spherical gradients of an image, a scalar field W̃ : S2→R specifying
the desired values, and interpolation weights α,β , and the system
finds the best-fitting function Ũ : S2→ R, minimizing:

min
Ũ

∫
S2

α ‖∇Ũ−Ṽ‖2 +β (Ũ−W̃ )2. (1)

The function Ũ is obtained by solving a screened Poisson equa-
tion [Bhat et al. 2008]:

(α ∆−β )Ũ = α ∇ ·Ṽ − β W̃ . (2)

Here ∆ is the Laplace-Beltrami operator which accounts for the ge-
ometry of the sphere. This continuous formulation is discretized by
introducing a set of finite element basis functions and applying the
Galerkin method (Section 4). The result is a linear system

(α L−βD)u = f , (3)

where matrix L is the discretized Laplace-Beltrami operator, D is
the mass matrix, u is the vector of coefficients associated with the
finite elements, and f is the vector giving the inner products of the
constraint function with the finite elements.

Motivation for a Metric-Aware Solution One could use any
of the spherical parameterizations introduced in the previous sec-
tion to perform Laplacian processing on the sphere. Because
these parameterizations bound the distortion, a metric-unaware
formulation might seem adequate. (For example, in performing
gradient-domain processing over an adapted TOAST parameteri-
zation, Kazhdan et al. [2010] show that results obtained using a
metric-unaware solution are very similar to results obtained when
incorporating the metric.) However, even for parameterizations like
HEALPix [Górski et al. 2005] and Rhombic Dodecahedron [Fu
et al. 2009], which are specifically designed to have low distortion,
the spatial nonuniformity of the finite differences/elements intro-
duces significant errors.

Figure 3 provides a visualization of this error in simple cases where
the analytic solution is known. It considers solutions Ũ : S2→R to
the Poisson equation

∆Ũ =−l · (l +1)Ỹ m
l , (4)

where the constraint is a scaled version of a spherical harmonic Ỹ m
l

of degree l. Because these spherical harmonics are eigenvectors of
the Laplace-Beltrami operator, with eigenvalues −l · (l+1), we ex-
pect the solutions of (4) to be the original spherical harmonics Ỹ m

l .
However, as Figure 3 indicates, relying on the mesh connectivity
alone to define a metric-unaware finite element system results in
significant error. It is only when derivatives and integrals are com-
puted with respect to the sphere metric that the solution accurately
reproduces the original spherical harmonics.



Resolution
N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

TOAST 6.8·10−1 6.8·10−1 6.8·10−1 6.8·10−1 6.8·10−1 6.8·10−1

Cube 3.4·10−1 3.4·10−1 3.4·10−1 3.4·10−1 3.4·10−1 3.4·10−1

HEALPix 2.7·10−1 2.7·10−1 2.7·10−1 2.7·10−1 2.7·10−1 2.7·10−1

Rhombic 1.2·10−1 1.2·10−1 1.2·10−1 1.2·10−1 1.2·10−1 1.2·10−1

Adaptive 1.4·10−3 4.0·10−4 1.2·10−4 3.5·10−5 9.7·10−6 2.6·10−6

Figure 3: Solutions to the Poisson equation (4) obtained using
a metric-unaware solver with various spherical parameterizations,
compared to the expected harmonic solutions (degree 1,2,3) in the
top row, and our metric-aware solver in the bottom row. (Functions
are visualized by scaling points on the unit sphere in proportion to
the absolute function value and coloring the points with positive
value in red and negative value in blue.) The table shows the RMS
errors for the degree-3 harmonic at solution convergence.

Our Approach In the discretization of the metric-aware finite el-
ement system, the coefficients of matrices L and D in (3) are expen-
sive to compute because they require inner products of functions
defined on the sphere. To avoid a situation in which the construc-
tion of the linear system is computationally more expensive than
its solution, we seek to exploit symmetries. In particular, the ax-
ial symmetry of the equirectangular parameterization lets us amor-
tize the cost of computing the coefficients across all finite elements
at a fixed latitude. Thus, if we think of a sphere discretization as
having complexity O(N2), computing the system coefficients using
our partition requires only O(N) work. In contrast, using a par-
tition based on subdivision of platonic solids, we could get up to
48-fold (cube/octahedron) or 120-fold (dodecahedron/icosahedron)
symmetry, still requiring O(N2) computation to set up the system.
(For further analysis, please see the discussion in Appendix A.)

It is important to note that although our discretization of the sphere
is not isotropic, the anisotropy is accounted for by defining all sys-
tem coefficients in terms of integrals over the sphere. Because the
solver is metric-aware, it converges to the correct solution as the
resolution N is increased, independent of the axis of the equirectan-
gular parameterization.

4 Geometry-Aware Finite Element Solution

In this section we describe the basic approach using a regular tes-
sellation of the equirectangular domain. Although this tessellation
results in a poorly conditioned solver, the design of the system in-
corporates many of the basic building blocks that we leverage in
our well-conditioned adapted discretization, described in Section 5.

The main tasks in defining a metric-aware spherical solver are to
choose the set of spherical finite elements that span the (approxi-
mating) subspace of functions, and to compute the coefficients of
the linear system using the sphere’s metric. We first show how
an equirectangular parameterization can be used to transform B-
splines defined on a planar domain into B-spline-like functions on
the sphere. Using these functions, we derive the coefficients of the
linear system. Finally, we describe how the nesting of B-splines
can be leveraged to define a multigrid solver for the spherical sys-
tem and briefly describe the implications for solving large systems.

4.1 Choosing the Finite Elements

The equirectangular parameterization Φ : [0,π]× [0,2π]→ S2 maps
a rectangle domain to the sphere as

Φ(θ ,ϕ) = (sinθ cosϕ,sinθ sinϕ,cosθ) .

To establish the subspace of spherical functions, we first create a set
of finite element basis functions over the domain and then use the
parameterization inverse to pull-back the functions to the sphere, as
shown in Figure 4.

Figure 4: Using the equirectangular parameterization (top), we
define our spherical finite elements (right) as the pull-back of pla-
nar B-splines (left) through the parameterization inverse.



We partition the planar (θ ,ϕ) domain into a grid of cells, such that
cells [0,N−1]× [0,2N−1] cover the desired range [0,π]× [0,2π].
Let BN

i, j(θ ,ϕ) be the biquadratic B-spline centered on cell (i, j).
Because B-splines form a partition of unity, their sum (over the
slightly extended grid [−1,N]× [−1,2N]) is the constant function
with value one:

∑
i∈[−1,N]

∑
j∈[−1,2N]

BN
i, j(θ ,ϕ) = 1 for θ ∈ [0,π],ϕ ∈ [0,2π].

Second-order B-splines have many benefits, including a tensor-
product structure that simplifies computation, continuous first
derivatives, a small support that results in sparse linear systems,
and a nesting structure compatible with a multigrid solver.

In the domain interior, we set the test function to equal the B-spline,
Fi, j = Bi, j, and define the spherical function as its pull-back F̃i, j =

Fi, j ◦Φ−1, illustrated by functions FA and F̃A in Figure 4.

Next we create test functions near the domain boundaries in accor-
dance with the spherical topology. For the spherical function to
be 2π-periodic in the ϕ direction, we define boundary functions as
FN

i,0 = BN
i,0 +BN

i,2N and FN
i,2N−1 = BN

i,2N−1 +BN
i,−1, illustrated by FB

and F̃B in Figure 4. And, for the spherical function to have con-
stant value and a well-defined (zero) derivative at each of the two
poles, we create special polar functions as follows. At the north
pole (θ = 0), we sum the B-spline functions along the two grid
rows i =−1 and i = 0, thus forming

FN
0 (θ) = BN

−1(θ)+BN
0 (θ) with BN

i (θ) = ∑
j∈[−1,2N]

BN
i, j(θ ,ϕ),

illustrated by FC and F̃C in Figure 4. The function at the south pole
is defined similarly as FN

N−1(θ) = BN
N−1(θ) + BN

N(θ). Thus, the
dimension of our discretization at resolution N is (N−2)×2N+2.

In defining these functions, our approach is inspired by previous
work in polar subdivision (e.g. [Karčiauskas and Peters 2006])
which supports the processing of quad-dominant meshes by using
polar caps to handle extraordinary vertices.

4.2 Defining the Linear System

To form the discretized linear system (3), for each pair of spherical
elements F̃I(p) = FI ◦Φ−1(p) and F̃J(p) = FJ ◦Φ−1(p) we must
compute the coefficients:

DI,J =
〈
F̃I , F̃J

〉
=
∫

S2
F̃I(p) · F̃J(p)d p

LI,J =
〈
∆ F̃I , F̃J

〉
=
∫

S2
∆ F̃I(p) · F̃J(p)d p.

These integrals can be expressed in terms of the functions FI and FJ
defined over the parameterization domain:

DI,J =
∫

π

0

∫ 2π

0
FI(θ ,ϕ)FJ(θ ,ϕ)sinθ dϕ dθ

LI,J = −
∫

π

0

∫ 2π

0

(
sinθ

∂FJ

∂θ

∂FI

∂θ
+

1
sinθ

∂FJ

∂ϕ

∂FI

∂ϕ

)
dϕ dθ . (5)

Because the functions FI are tensor products of B-splines, com-
puting the system coefficients reduces to integrating products of
polynomials with trigonometric functions. For integrals of the form∫

xn sin(x)dx we can obtain a closed-form value using the identities:∫
xn sinxdx = −xn cosx+n

∫
xn−1 cosxdx∫

xn cosxdx = xn sinx−n
∫

xn−1 sinxdx.

For the cosecant term arising in the Laplace-Beltrami coefficients,∫
xn/sin(x)dx, we can compute the integral by evaluating the poly-

logarithm function (e.g. using the Cephes Library [Cephes 1995]).

4.3 Nesting and Multigrid

The B-spline basis has a nesting property that enables efficient
multigrid solutions. In this section, we derive the prolongation ma-
trix to transition between levels of a multigrid hierarchy.

In 1D, a B-spline at resolution N can be expressed as the linear
combination of B-splines at resolution 2N. For second-order B-
splines, the nesting relationship is:

BN
i (x) = η0B2N

2i−1(x)+η1B2N
2i (x)+η2B2N

2i+1(x)+η3B2N
2i+2(x),

with interpolation weights η0 = η3 = 0.25 and η1 = η2 = 0.75.

For 2D tensor-product B-splines, the 2D interpolation weights are
simply the products of the 1D interpolation weights:

BN
i, j(x,y) =

3

∑
k,l=0

ηkηlB
2N
2i−1+k,2 j−1+l(x,y).

In the context of our spherical elements, the linearity of the pull-
back operator implies that we can continue to use the nesting struc-
ture of B-splines to express coarser spherical elements F̃N as the
linear combination of finer spherical elements F̃2N . One important
aspect is to show that this nesting property is satisfied for the spe-
cial polar elements. The finite element FN

0 (θ) associated with the
north pole can be expressed as

FN
0 (θ) = BN

−1(θ)+B0(θ) =

η0B2N
−3(θ) +

η1B2N
−2(θ) +

η1B2N
−1(θ) + η0B2N

−1(θ)+

η0B2N
0 (θ) + η1B2N

0 (θ)+

η1B2N
1 (θ)+

η0B2N
2 (θ) .

Using the fact that θ ∈ [0,π] and that the second-order B-spline
Bi(x) is supported in the range [i− 1, i+ 2], the expression for the
north-pole element becomes:

FN
0 (θ) = (η0 +η1)

(
B2N
−1(θ)+B2N

0 (θ)
)
+η1B2N

1 (θ)+η0B2N
2 (θ)

= F2N
0 (θ)+η1B2N

1 (θ)+η0B2N
2 (θ).

Finally, since the B-splines form a partition of unity, we get:

FN
0 (θ) = F2N

0 (θ)+
(

η1B2N
1 (θ)+η0B2N

2 (θ)
) 4N

∑
j=−1

B4N
j (ϕ)

= F2N
0 (θ)+

4N−1

∑
j=0

(
η1F2N

1, j (θ ,ϕ)+η0F2N
2, j (θ ,ϕ)

)
.

Thus, the element associated with the north pole at resolution N can
be expressed as a linear combination of elements at resolution 2N.
An analogous argument holds at the south pole.

Gathering the interpolation weights into the matrix P2N
N we obtain

the prolongation operator that can be used to transition between the
different resolutions of a multigrid solver.



Note that by construction, if LN (resp. DN ) denotes the Laplace-
Beltrami matrix (resp. mass matrix) at resolution N, we have:

LN =
(

P2N
N

)T
L2NP2N

N and DN =
(

P2N
N

)T
D2NP2N

N .

Thus, the system matrices defined in Equation (5) automatically sat-
isfy the Galerkin condition and we can compute the matrices for the
coarser resolutions directly, without having to perform the sparse
matrix multiplications required by an algebraic multigrid solver.

4.4 Efficient System Solution

Creating the linear system using an equirectangular parameteriza-
tion provides two efficiency advantages.

First, due to rotational symmetry, for any pair of spherical elements
F̃i, j and F̃i′, j′ , and any longitudinal offset δ , we have:

〈F̃i, j, F̃i′, j′〉 = 〈F̃i, j+δ , F̃i′, j′+δ 〉
〈∆ F̃i, j, F̃i′, j′〉 = 〈∆ F̃i, j+δ , F̃i′, j′+δ 〉.

Thus, we can re-use the computation performed in defining the row
of the system matrix corresponding to element Fi,0 to set the values
for all other elements Fi, j. This is crucial for large datasets, where
the system matrix becomes too large to store and computation of the
system coefficients at high precision would overwhelm the solver
time if it had to be performed for every element independently.

The second advantage is that the resulting matrix L is banded, be-
cause elements in one image row only overlap elements in nearby
rows. Specifically, for any |i− i′| > 2, elements Fi, j and Fi′, j′ are
always disjoint. Thus, a θ -major data ordering lets us implement
a streaming solver akin to that described in [Kazhdan and Hoppe
2008]. Such a solver requires only a few rows of the grid to be res-
ident in memory at any given time — providing a way to solve a
system of complexity O(N2) with only O(N) working memory.

V-Cycles
0 1 2 3 4 5

Regular 1.0·100 8.8·10−2 7.1·10−2 6.2·10−2 5.7·10−2 5.4·10−2

Adapted 1.0·100 4.1·10−3 3.4·10−5 1.4·10−7 2.8·10−10 7.2·10−13

Residual (Degree 2)

Figure 5: Visualizations (top) and residual norms (bottom) for the
multigrid solution to the Poisson equation with degree-2 spherical
harmonic constraints, using a regular equirectangular parameter-
ization (first row) and our adapted equirectangular elements (sec-
ond row). The visualizations show the parameterization alignment
(left), the solution (center), and isophotes highlighting the solver
imprecision near the north pole (right).

5 Adapted Elements for Better Conditioning

While the finite element system developed in the previous section
offers a multiresolution hierarchy, it is difficult to directly leverage
this hierarchy in a classical multigrid solver. The challenge is that
the severe anisotropy in elements near the poles hinders the conver-
gence of traditional relaxation techniques (e.g. Gauss-Seidel).

Figure 5 demonstrates this phenomenon, providing both a visual-
ization and residual magnitudes for the multigrid solutions to the
Poisson equation, obtained when the input constraint is the degree-
2 spherical harmonic from Figure 3. As these results indicate, the
solver defined by the regular equirectangular parameterization fails
to converge to the correct solution, and barely improves with in-
creased number of V-cycles.

To overcome this, we use the equirectangular map, but adaptively
discretize its domain to bound the anisotropy of the resulting ele-
ments (Figure 2). Specifically, in discretizing the sphere at resolu-
tion N we still use N circles of latitude, but partition the k-th circle
of latitude into N(k) intervals (rather than always 2N), choosing
N(k) so that it is a power of two and the lengths of the longitudinal
and latitudinal arcs are within a factor of

√
2. Using the fact that the

circle at latitude θ has length 2π sinθ and that the longitudinal arcs
have length π/N, we set N(k) to be the power of two that satisfies:

π

N
1√
2
≤ 2π sin(θk)

N(k)
<

π

N

√
2 with θk =

k+0.5
N

π.

The motivation is similar to that in the isocube map [Wan et al.
2007]. What distinguishes our method is that we restrict N(k) to
be a power of two. As a result, the geometric structure of samples
across adjacent rows remains regular, allowing us to leverage the
axial symmetry in efficiently defining a geometry-aware system.

Note that, as in [Grinspun et al. 2002], our implementation has the
B-splines centered on the facets of the parameterization and defined
independently of the size and shape of adjacent faces. Thus, the
function-space does not exhibit any T-junction discontinuities.

Defining the Linear System Thanks to the nesting of B-splines,
our adapted discretization defines a space of functions that is a sub-
space of the original space of functions. Thus, the matrix and con-
straint coefficients defined by the adapted system can also be ex-
pressed in terms of the coefficients of the non-adapted system.

The key to establishing the transition between the adapted and non-
adapted system is the definition of a refinement operator R that ex-
presses elements in the adapted system as linear combinations of
elements in the non-adapted system from Section 4. Using R, the
non-adapted system (αL−βD)u = f can be transformed into the
adapted system (αL̄−β D̄) ū = f̄ , with:

L̄ = RT LR, D̄ = RT DR, f̄ = RT f and u = Rū.

We define the operator R per row of the domain grid. To do this,
we express an element defined by sampling a circle at resolution
N(k) = 2c in terms of the elements defined by sampling the circle at
resolution 2N = 2C. Assuming that C≥ c, this can be accomplished
in an iterative manner:

• If c = C then the refinement operator is the identity and we
are done with the current row.

• Otherwise, we refine along the circle, using the weights
{η0,η1,η2,η3} = {0.25,0.75,0.75,0.25} to express a uni-
variate B-spline sampled at 2c locations in terms of univariate
B-splines sampled at 2c+1 locations and repeat the refinement
of the current row with the exponent c replaced by c+1.



It is important that the adapted discretization still maintains the
nesting property between different multigrid levels. It can be shown
that this is satisfied if at all levels, the refinement of adjacent circles
of latitude never differ by more than a factor of two. The only time
this could be violated is near the poles and at low resolutions, and
it can be shown this does not happen.

6 Results

The design of our adapted equirectangular finite-element system is
motivated by several key requirements. From the theoretical per-
spective, our goal is to design a system that correctly incorporates
information about the geometry of the sphere. From the numerical
perspective, our goal is to design a multigrid solver that exhibits the
convergence properties of standard multigrid solvers defined over
regular (Euclidean) grids. And finally, from a practical perspective,
our goal is to design a solver that is both fast and scalable, support-
ing image processing over large spherical panoramas.

6.1 Geometry Awareness

As discussed in Section 3, even when the parameterization of the
sphere is chosen to be either area-preserving (HEALPix) or approx-
imately area- and angle-preserving (Rhombic Dodecahedron), the
obtained solution can deviate significantly from the true (geometry-
aware) solution. This is demonstrated in the table in Figure 3 which
gives the RMS difference between the correct (spherical harmonic)
solution and the one returned by the different solvers.

Running the solvers to convergence (the residual never exceeds
5× 10−12 for any of the solvers), we see that geometry-unaware
solvers converge to the wrong solution and that this error is not
reduced by increasing the sampling resolution N. In contrast, our
geometry-aware solver returns a solution that approximates the cor-
rect solution even at low resolutions and the quality of the approxi-
mation improves steadily with refinement.

6.2 Multigrid Convergence

To address the anisotropy of the regular equirectangular parameter-
ization at the poles, we have proposed adapted equirectangular ele-
ments that define an approximately uniform partition of the sphere.
As the table in Figure 5 shows, our adapted elements resolve the
difficulty with anisotropy, providing a multigrid solver that quickly
converges to the correct solution. Furthermore, this table demon-
strates that as the number of V-cycles is increased, the solver ex-
hibits the exponential decay in residual norm typical of multigrid
solvers defined over regular domains.

6.3 Reaction-diffusion processing on the sphere

To demonstrate the practical implications of geometry awareness
and multigrid convergence, we use the different parameterizations
to perform the semi-implicit time-stepping in a reaction-diffusion
process, shown in Figure 6. (See Appendix B for details of the
implementation.)

As observed by Turk [1991] and Witkin et al. [1991], failure to ac-
commodate the geometry in a reaction-diffusion process can result
in undesirable artifacts, and we see these in the synthesis of Turing’s
“spots” texture [1952]. For TOAST and Cube-Map, which do not
preserve area, the spots have non-uniform sizes. For the (nearly)
area-preserving HEALPix and Rhombic-Dodecahedron parameter-
izations, the spots take on elliptical shapes. By comparison, our
efficient metric-aware solver obtains nicely uniform spots.

Figure 6: Visualizations of the “spots” patterns obtained by run-
ning reaction-diffusion processes using finite elements systems de-
rived from different spherical parameterizations. The use of a
metric-unaware linear system results in patterns where the size and
orientation of the spots reflects the underlying parameterization. In
contrast, using a metric-aware linear system results in a uniformly
sized and isotropic pattern.

6.4 Spherical Image Processing

We apply our adapted equirectangular elements to two problems in
spherical image processing: stitching and sharpening.

Image Stitching In this application, we stitch together a set of
registered images comprising a spherical panorama. We do this by
first constructing a target vector-field representing the approximate
gradients of the seamless image and then solving the Poisson equa-
tion to fit an image to this vector-field [Pérez et al. 2003; Levin
et al. 2004; Agarwala et al. 2004]. The target vector-field is con-
structed by merging the gradients from the individual images and
setting seam-crossing gradients to zero. (Details on converting the
finite-difference representation of the gradients to a finite-elements
representation are provided in Appendix C.)

Figure 7 show the results of image stitching on a 32-megapixel
spherical panorama comprised of 15 images (top row) and a 2-
gigapixel spherical panorama comprised of 153 images (middle
row). Starting with the composite image (center) and a label file in-
dicating the source of the individual pixels in the composite (left),
we construct the target vector-field. Then, solving the associated
Poisson equation, we obtain the seamless images (right).

Gradient-Based Sharpening In this application we sharpen an
image by solving a linear system that simultaneously aims to pre-
serve the color values in the original image and amplify the gradi-
ents [Bhat et al. 2008]. For a source image W̃ , we do this by solving
the system in Equation 2 with α,β 6= 0 and Ṽ = γ∇W̃ for γ > 1.



Figure 7: Use of our metric-aware solver for image stitching (top and middle) and gradient-based sharpening (bottom). The figures on the
left show the input images, and the ones on the right show the results of the image processing.

The bottom row of Figure 7 shows the result of sharpening a 128-
megapixel spherical panorama of an indoor scene. It can be seen
that in regions of low-frequency, where the gradients are small, the
value interpolation constraints dominate and the sharpened image
preserves the original colors. In regions of high-frequency the (am-
plified) gradient interpolation constraints dominate and the sharp-
ened image accentuates the color differences.

As discussed in [Kazhdan et al. 2010], metric-unaware solvers can
still provide convincing solutions for image-processing applications
such as stitching and sharpening. However, even in this context, an
adapted equirectangular parameterization provides an advantage by
allowing us to work directly with data sampled on an equirectangu-
lar grid, without requiring lossy sampling or expensive conversion.

Implementation As discussed in Section 4.4, we design a solver
similar to that described by Kazhdan and Hoppe [2008]. Using
multi-level streaming, our solver requires just two passes over the
data and maintains a small window of image rows in working mem-
ory at any time.

Though our implementation requires that a separate stencil be com-
puted for each row of the image, the cost of this computation is
amortized across the relaxation of all the pixels within a row and
results in a negligible overall increase in computation time.

Table 1 summarizes the performance numbers for the stitching
and sharpening experiments described above, measured on a lap-
top with a 2.54 GHz Intel Core 2 Extreme Q9300 processor and
a 6 MB L2 cache. Comparing the results in Table 1 to the results

Size Time Peak Memory Size on Disk
Stitching 1 8,192×4,096 45 sec. 83 MB 510 MB
Sharpening 16,384×8,192 156 sec. 99 MB 2 GB
Stitching 2 65,536×32,768 3276 sec. 207 MB 32 GB

Table 1: Solution size, running time, and memory usage for the image
stitching and sharpening applications shown in Figure 7, obtained with a
solver running a single V-cycle, with five Gauss-Seidel iterations at each
level, and using single-precision floating point values.

described in [Kazhdan and Hoppe 2008], we see that our spher-
ical solver exhibits similar performance characteristics, requiring
1.2-1.4 seconds of computation time per megapixel (compared to
the 1.4-1.6 seconds/megapixel in [Kazhdan and Hoppe 2008]) and
keeping only a small (sub-linear) subset of the data in working
memory at any time.

We have confirmed the accuracy of our solver by comparing the
above results with “ground-truth” results obtained using a solver
running five V-cycles, with ten Gauss-Seidel iterations per level,
and using double-precision floating point values. (Using this solver,
the residual norms were smaller than 10−12, suggesting conver-
gence.) For both applications, a single V-cycle sufficed to obtain an
image whose color values never differed by more than 1/255 from
the values of “ground-truth” solution — the precision of a color
channel in a 24-bit image.



7 Conclusion

In this work, we have introduced an adapted finite element system
that supports the geometry-aware processing of spherical imagery.
Using this system, we have shown how to extend traditional (pla-
nar) image processing techniques to the sphere, without sacrificing
either speed or accuracy. In doing so, we have maintained essential
regularity of the parameterization, enabling the design of a stream-
ing multigrid solver that supports the processing of huge images.

In addition, because this representation is a simple extension of
a commonly used spherical parameterization, the equirectangular
map, our technique can be readily applied to existing datasets with-
out any lossy resampling or expensive conversion.
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A Metric-Aware Systems

While Section 3 compares the performance of our metric-aware
adapted finite element system with the metric-unaware systems de-
fined by the other parameterizations, we also consider metric-aware
implementations of these solvers by incorporating the metric tensor
in the definition of the system. (For an example of such an im-
plementation, we refer the reader to Stam’s work on flows on sur-
faces [2003].)

Table 2 shows the results of using metric-aware finite element sys-
tems derived from the different parameterizations. The incorpora-
tion of the metric tensor results in solutions that are more accurate
and improve with mesh refinement. However, due to the discretiza-
tion of the integrals, the solutions derived from the TOAST, Cube-
Map, HEALPix, and Rhombic Dodecahedron parameterizations are
not as accurate and do not improve as quickly under refinement
as the solution derived using our adapted equirectangular system,
which computes the integrals analytically.

Independent of accuracy, the use of metric-aware parameterizations
without axial symmetry also leads to undesirable computational



costs. In our implementation, constructing the geometry-aware sys-
tem matrices for the TOAST, Cube-Map, HEALPix, and Rhombic
Dodecahedron parameterizations had an overhead of 12 seconds per
megapixel (compared to 1.2-1.4 seconds/megapixel of solver time
for our adaptive equirectangular solver).

Although this computational bottleneck can be partially resolved by
pre-computing the system matrices and storing them on disk, such a
solution would still be costly due to the associated I/O. (For second-
order B-splines, each row of the matrix has 25 nonzero values, so
storage costs would be on the order of 100 MB per megapixel.) This
situation would be further exacerbated in the context of streaming
large images, since the restricted working-set size would imply that
matrix entries are likely to be evicted from memory before all the
symmetric instances of a pixel are visited, making it harder to lever-
age symmetry for efficient processing.

Finally, even if the system can be fit into working memory, the lack
of redundant matrix entries would necessarily slow down process-
ing as it would more quickly overwhelm lower levels of the memory
hierarchy, resulting in costly cache misses.

B Evolving the Reaction-Diffusion

We describe the way in which our finite-elements system can be
used to perform geometry-aware reaction-diffusion on the sphere.
For simplicity, we begin by describing a single-chemical system
and then discuss generalizations to multi-chemical systems.

B.1 Single-Chemical Systems

Following the presentation in [Turk 1991], we consider the distri-
bution of a chemical over the sphere, represented by the function
A(p). Given initial concentrations of the chemical, we would like
to evolve the concentration, subject to the differential equation:

∂A
∂ t

= R(A)+λ∆A.

Here, the reaction function R : R→ R defines the (nonlinear) man-
ner in which the chemical either grows or decays in response to its
current concentration, and the value λ gives the rate of diffusion.1

To advance the process, we update the values of A using a semi-
implicit approach. Specifically, given function At corresponding to
the chemical concentrations at time t, and setting Rt = R(At), we

1To generate the random noise often used in these systems, we construct
a spherical function in the frequency domain, assigning random values to
the spherical harmonic coefficients. Sampling at the centers of the elements
gives a pattern of spherical noise that is consistent across the parameteriza-
tions and whose frequency content is parameterization-independent.

Resolution
N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

TOAST 1.6·10−2 7.5·10−3 3.7·10−3 1.8·10−3 9.2·10−4 4.6·10−4

Cube 9.0·10−3 3.1·10−3 1.3·10−3 5.6·10−4 2.7·10−4 1.3·10−4

HEALPix 2.3·10−2 9.5·10−3 4.7·10−3 2.4·10−3 1.2·10−3 6.3·10−4

Rhombic 3.3·10−2 1.2·10−2 4.9·10−3 2.2·10−3 1.0·10−3 5.0·10−4

Adaptive 1.4·10−3 4.0·10−4 1.2·10−4 3.5·10−5 9.7·10−6 2.6·10−6

Table 2: Discretization error for solutions to the Poisson equation
when a degree-3 spherical harmonic is used as a constraint. In this
experiment, all the finite element systems are metric-aware.

obtain the concentration of A at time t +δ by solving:

At+δ −At

δ
= Rt +λ∆At+δ =⇒ (id−δλ∆)At+δ = δRt +At .

Galerkin Discretization Assuming that the functions At and Rt

are expressed in terms of their coefficients with respect to the func-
tion basis {FI}, with At(p) = ∑at

IFI(p) and Rt(p) = ∑rt
IFI(p), we

discretize the linear system by integrating both-sides of the equation
against the basis functions {FJ}. This gives the system of equations:

(D−δλL)at+δ = δDrt +Dat . (6)

Function Evaluation Although we can assume that we know the
values of the coefficients at from the solution at the previous time-
step, we cannot assume that the coefficients of R(At) are known
a priori. In particular, for most common reaction-diffusion pro-
cesses, the function R is defined by the way it acts on function val-
ues, not function coefficients. Thus, to perform a semi-implicit time
step, we need to:

1. Evaluate the coefficients of the chemical concentration,

2. Apply the reaction function to get the reaction rates, and

3. Fit coefficients to the reaction rate values.

To do this, we define the set {pJ} ⊂ S2 to be the centers of the
elements and construct the (sparse) evaluation matrix:

EI,J = FI(pJ).

Given this matrix, we compute the reaction coefficients rt as:

rt = E−1 ·R(Eat). (7)

(Overloading notation, we define R to be a vector-valued function
by applying R to each entry of the vector.)

Thus, we evolve the chemical concentration by solving two linear
systems (first Equation 7 and then Equation 6). Using the nesting
structure of the basis functions {FI}, both are solved in linear time
using a multigrid framework (as described in Section 5).

B.2 Multi-Chemical Systems

More generally, the reaction-diffusion process may be driven by
the interaction of multiple chemicals, {A1, . . . ,An}, subject to the
differential equations:

∂Ai

∂ t
= Ri(A1, . . . ,An)+λi∆Ai.

Following Turk’s implementation [1991], we evolve the chemicals
simultaneously, using a Jacobi-like update, by solving:

(id−δλ∆)At+δ

i = δRi(At
1, . . . ,A

t
n)+At

i .

(Although it would also be possible to update the chemical con-
centrations sequentially, using the most recently computed concen-
tration values to define the new reaction rates, we have chosen the
former approach because it allows the different chemical concen-
trations to be updated in parallel.)

Discretizing as in the single-chemical system, we evolve each
chemical by solving the system:

at+δ

i = (D−δλiL)−1 ·D
(

δE−1 ·Ri(Eat
1, . . . ,Eat

n)+at
i

)
,

which also requires solving two linear systems per chemical.



C Setting the Stitching Constraints

In this appendix, we describe how to compute the constraints pre-
sented to the Poisson system used in solving the image-stitching
problem. Because our aim is to support the processing of images
represented in the equirectangular parameterization, we assume that
the input is represented as a set of desired finite differences between
adjacent pixels in a regular N×2N grid. These finite differences are
most often obtained by copying the finite differences from within
individual image-patches and setting the finite differences across
the seams between different image patches to zero. (See, for exam-
ple, [Pérez et al. 2003; Agarwala et al. 2004; Levin et al. 2004].)

The only condition that we make on these finite differences is that
all horizontal finite differences in the first and last rows are zero and
that the vertical finite differences across the top and bottom edges of
the parameterization are also zero. This corresponds to the fact that
we define the polar cap functions to be axially symmetric functions
(so their latitudinal derivatives are zero) and we force them to have
zero derivative at the poles (so the derivatives across the latitudes
90◦ and −90◦ vanish).

We define the constraints in three steps. First, we transform the
prescribed finite differences into a continuous vector field on the
parameterization domain. Then, we compute the divergence of the
vector field to get constraints for the regular equirectangular finite-
elements system defined in Section 4. Finally, we transform the
constraints from the regular equirectangular finite elements to the
adapted elements.

From Finite Differences to Gradient Fields To transition from
finite differences to (regular) finite-elements constraints, we follow
the approach described in [Kazhdan and Hoppe 2008] which we re-
view here. This approach uses the fact that the derivative of an n-th
order B-spline can be expressed as the differences of two (shifted)
B-splines of order n−1:

d
dx

Bn(x) = Bn−1(x+0.5)−Bn−1(x−0.5).

As a result, it follows that if F(x) is a function expressed as the sum
of regularly shifted B-splines of degree n,

F(x) = ∑
i

αiBn(x− i),

then the derivative of F(x) can be expressed as the sum of regularly
shifted B-splines of degree n−1, with coefficients given by the finite
difference of the coefficients of F(x):

dF
dx

= ∑
i

αi

(
Bn−1(x− i+0.5)−Bn−1(x− i−0.5)

)
= ∑

i
(αi+1−αi)Bn−1(x− i−0.5).

So, treating the finite differences of an array of values as the co-
efficients of a function (with respect to B-splines of order n− 1)
is equivalent to treating the entries of the array as coefficients of a
function (with respect to B-splines of order n) and taking the deriva-
tive of the function.

A similar arguments shows that 2D finite differences can be inter-
preted as the coefficients of a gradient field, expressed in terms of
B-splines of (mixed) order. Thus, given the input finite differences,
one can interpret these as the coefficients of a vector field in the
equirectangular parameterization of the sphere. Here, the restric-
tion that the finite differences vanish near the poles ensures that the
behavior of the gradient field is well-defined (i.e. zero) at the poles.

From Gradient Fields to Non-Adapted Divergence Constraints
To extend the approach described in [Kazhdan and Hoppe 2008] to
spherical imagery, we modify the integration defining the system
coefficients to take into account the geometry of the sphere. Given
the vector field (F1,F2) (defined by the finite differences) and given
the gradient of the I-th basis function (∂BI/∂θ ,∂BI/∂ϕ), we ob-
tain the I-th coefficient of the constraint vector:

fI =
∫ 2π

0

∫
π

0
(F1,F2)g−1

(
∂BI

∂θ
,

∂BI

∂ϕ

)T √
det(g)dθ dϕ

=
∫ 2π

0

∫
π

0

(
sinθF1

∂BI

∂θ
+

1
sinθ

F2
∂BI

∂ϕ

)
dθ dϕ,

where g = dΦT dΦ is the metric tensor defined by the Jacobian of
the parameterization Φ : [0,π]× [0,2π)−→ S2.

Since F1, F2, ∂BI/∂θ , and ∂Bi/∂ϕ are all piecewise polynomial
functions, the computation of the I-th coefficient of the constraint
vector, fI , reduces to the integration of the products of sine and
cosecant functions with polynomials, as in Equation (5). Moreover,
as with the coefficients of the system matrices, the rotational sym-
metry of the finite elements means that the integrals only need to be
computed once per image row.

From Non-Adapted Constraints to Adapted Constraints
Finally, we apply the transpose of the refinement operator described
in Section 5 to get the constraints for the adapted system. Similarly,
after solving the adapted linear system, we obtain a regular solution
by applying the refinement operator.


