
SIGGRAPH 2004 Submission Geometry Clipmaps (Online ID 0350) Page 1 of 8

Draft – Do not distribute. 2013/04/01 10:23:51 AM geomclipmap_newmath.docx

Geometry Clipmaps: Terrain Rendering Using Nested Regular Grids
Frank Losasso Hugues Hoppe

Stanford University & Microsoft Research Microsoft Research

Illustration using a coarse geometry clipmap (size 𝑛=31) View of the 216,000×93,600 U.S. dataset near Grand Canyon (𝑛=255)

Figure 1:Terrains rendered using geometry clipmaps, showing clipmap levels (size 𝑛×𝑛) and transition regions (in blue on right).

Abstract
Rendering throughput has reached a level that enables a novel
approach to level-of-detail (LOD) control in terrain rendering.
We introduce the geometry clipmap, which caches the terrain in a
set of nested regular grids centered about the viewer. The grids
are stored as vertex buffers in fast video memory, and are incre-
mentally refilled as the viewpoint moves. This simple framework
provides visual continuity, uniform frame rate, complexity throt-
tling, and graceful degradation. Moreover it allows two new
exciting real-time functionalities: decompression and synthesis.
Our main dataset is a 40GB height map of the United States. A
compressed image pyramid reduces the size by a remarkable
factor of 100, so that it fits entirely in memory. This compressed
data also contributes normal maps for shading. As the viewer
approaches the surface, we synthesize grid levels finer than the
stored terrain using fractal noise displacement. Decompression,
synthesis, and normal-map computations are incremental, thereby
allowing interactive flight at 60 frames/sec.
Keywords: level-of-detail control, terrain compression and synthesis.

1. Introduction
Terrain geometry is an important component of outdoor graphics
environments, as used for instance in movies, virtual environ-
ments, cartography, and games. In particular, real-time outdoor
games include flight simulators, driving simulators, and massively
multiplayer games. In this paper, we focus on the real-time
rendering of terrain height-fields.
Large terrain height maps may contain billions of samples, still far
too many to render interactively by brute force. Moreover,
rendering a uniformly dense triangulation can lead to aliasing
artifacts, caused by an unfiltered many-to-one map from samples
to pixels, just as in texturing without mipmaps [Williams 1983].
Thus level-of-detail (LOD) control is necessary to adjust the
terrain tessellation as a function of the view parameters.

There has been extensive research on terrain LOD, as reviewed in
Section 2. Previous schemes adapt refinement based not only on
the view but also on the local terrain geometry. Intuitively, planar
regions are assigned larger triangles, resulting in irregular meshes
with fewer triangles to render. However, these frameworks have
several shortcomings. The refinement criteria and/or refinement
operations must be pre-computed and consume additional
memory. The data structures involve random-access traversals
with poor cache-coherence. Changing the tessellation requires
slower immediate-mode rendering, while caching static regions
hinders temporal continuity. To maintain a constant frame rate,
refinement thresholds must change with the bumpiness of the
viewed terrain. Finally, surface shading requires texture images,
which are stored separately and use an entirely different LOD
structure.
Rendering throughput in present GPUs has surpassed 100M∆/sec,
enough to fully cover a framebuffer with pixel-sized triangles at
video rates. Moreover, vertex processing rates should continue to
increase as they catch up with pixel rates. Thus, our premise is
that fine LOD adaptivity is no longer essential, and we instead
seek a screen-uniform tessellation of the terrain where all triangles
are nearly pixel-sized. The key is to develop an LOD framework
that can optimally feed the graphics pipeline.
Our contribution is the geometry clipmap, which caches the
terrain in a set of nested regular grids centered about the viewer
(Figure 1). These grids represent filtered versions of the terrain at
power-of-two resolutions, and are stored as vertex buffers in
video memory. As the viewpoint moves, the clipmap levels shift
and are incrementally refilled with data.
The approach has parallels with the LOD treatment of images in
texture mapping. To prevent spatial aliasing, an image is pre-
filtered into a mipmap pyramid of power-of-two grids [Williams
1983]. The mipmap level rendered at a pixel is a function of
screen-space parametric derivatives, which depend on view
parameters, and not on the content of the image. A texture clip-
map caches a view-dependent subset of the mipmap pyramid
[Tanner et al 1998]. Fast incremental update of a texture clipmap
allows exploration of huge images.
While geometry clipmaps are inspired by texture clipmaps, there
are some key differences. Texture clipmaps compute LOD per-
pixel based on screen-space projected geometry. With terrains
however, the screen-space geometry does not exist until the

SIGGRAPH 2004 Submission Geometry Clipmaps (Online ID 0350) Page 2 of 8

Draft – Do not distribute. 2013/04/01 10:23:51 AM geomclipmap_newmath.docx

terrain LOD is selected — a circular dependency. More im-
portantly, per-pixel LOD selection would make it difficult to keep
the mesh watertight and temporally smooth.
Instead, we select LOD in world space based on viewer distance,
using a set of nested rectangular regions about the viewpoint. We
create transition regions to smoothly blend between levels, and
avoid T-junctions by stitching the level boundaries using zero-
area triangles. The LOD transition scheme allows independent
translation of the clipmap levels, and lets levels be cropped rather
than invalidated atomically as in [Tanner et al 1998]. Also, we
apply the same scheme to texture images, obtaining a unified
LOD framework for geometry and images. And unlike texture
clipmaps, it does not require special hardware.
Geometry clipmaps provide a number of advantages over previ-
ous terrain LOD schemes:
• Simplicity. There is no irregular traversal of pointer/index-

based structures, and no tracking of refinement dependencies.
• Optimal rendering throughput. The clipmap vertices reside

in video memory, and their grid structure allows indexed trian-
gle-strip rendering with optimal vertex-cache reuse.

• Visual continuity. Inter-level transition regions provide spatial
and temporal continuity for both geometry and texture, using a
few instructions in the vertex and pixel programs respectively.

• Steady rendering. The rendering rate is nearly constant since
the tessellation complexity is independent of local terrain
roughness. There are no parameters to dynamically adjust.

• Immediate complexity throttling. Even with a fixed clipmap
size, we can shrink the rendered regions to reduce rendering
load. Tanner et al [1998] use a similar idea to regulate the up-
date bandwidth for texture clipmaps.

• Graceful degradation. When the viewer is moving quickly,
the update bandwidth (to refill the clipmap) can become the
bottleneck. As in texture clipmaps, we update as many levels as
possible within a prescribed budget. The effect is that fast-
moving terrain loses its high-frequency detail.

• Surface shading. Normal maps are computed on-the-fly from
the geometry, and use the same LOD structure as the geometry.

Geometry clipmaps also enable two new runtime functionalities:
• Compression. Since only the clipmap needs to be expanded

into vertex data, the remainder of the terrain pyramid can be
stored in compressed form. We compress residuals between
pyramid levels using a 2D image coder. The high data coher-
ence allows for compression factors around 60-100. Storing
terrains entirely in memory avoids disk paging hiccups.

• Synthesis. The simple grid structure permits on-the-fly terrain
synthesis, so that coarsely specified geometry can be amplified
by procedurally generated detail. We demonstrate simple frac-
tal noise, which will soon be possible on the GPU itself.

Limitations. The rendered mesh is more complex than in prior
LOD schemes. Essentially, we are always assuming a worst-case
terrain, which has uniform detail (everywhere and at all frequen-
cies) and thus does not benefit from local adaptivity. On the other
hand, the mesh is regular and resides in video memory, and thus
delivers optimal rendering performance for this worst case.
Another limitation is that the terrain is assumed to have bounded
spectral density as discussed in Section 9. For example, a tall
needle-like feature would morph into view a little too late. Fortu-
nately, practical terrains are well behaved and do not present such
problems. Note that buildings, vegetation, and other objects that
populate the environment are rendered separately using other
LOD techniques.

2. Previous terrain LOD techniques
Terrain LOD algorithms use a hierarchy of mesh refinement
operations to adapt the surface tessellation. Algorithms can be
categorized by the structure of these hierarchies.
• Irregular meshes (a.k.a. triangulated irregular networks)

provide the best approximation for a given number of faces, but
require the tracking of mesh adjacencies and refinement de-
pendencies. Some hierarchies use Delaunay triangulations [e.g.
Cohen-Or and Levanoni 1996; Cignoni et al 1997; Rabinovich
and Gotsman 1997] while others allow arbitrary connectivities
[e.g. De Floriani et al 1997; Hoppe 1998; El-Sana and Varshney
1999].

• Bin-tree hierarchies (a.k.a. longest-edge bisection, restricted
quadtree, hierarchies of right triangles) use the recursive bisec-
tion of right triangles to greatly simplify memory layout and
traversal algorithms. However, these semi-regular meshes still
involve random-access memory references and immediate-
mode rendering [e.g. Lindstrom et al 1996; Duchaineau 1997;
Pajarola 1998; Röttger et al 1998; Blow 2000; Lindstrom and
Pascucci 2002].

• Bin-tree regions define coarser-grain refinement operations on
regions associated with a bin-tree structure. Precomputed trian-
gulated regions are uploaded to buffers cached in video
memory, thereby boosting rendering throughput. One drawback
is that the caching hinders use of geomorphs for temporal co-
herence [e.g. Levenberg 2002; Cignoni et al 2003a,2003b].

• Tiled blocks partition the terrain into square patches that are
tessellated at different resolutions. The main challenge is to
stitch the block boundaries seamlessly [e.g. Hitchner and
McGreevy 1993; Bishop et al 1998; Wagner 2004]. Rather than
defining a world-space quadtree, geometry clipmaps define a
hierarchy centered about the viewer, and this greatly simplifies
inter-level continuity in both space and time.

Ideally, view-dependent LOD algorithms adaptively refine and
coarsen the mesh based on screen-space geometric error, the
deviation in pixels between the mesh and the original terrain.
Screen-space error combines the effects of (1) viewer distance, (2)
surface orientation, and (3) surface geometry. Since surface
orientation seldom provides significant LOD gain, many schemes
choose to ignore it. One common refinement criterion [Blow
2000] stores at each vertex a radius defining an enclosing sphere.
The pre-computed radius encodes the local surface approximation
error, such that the neighborhood of the vertex is refined if and
only if the viewpoint enters the sphere.
Geometry clipmaps are quite different from these prior works.
The refinement hierarchy is based on viewer-centric grids, with
geomorphs providing inter-level continuity. The refinement
criterion still considers viewer distance, but it ignores local
surface geometry, i.e. all vertices share the same “sphere radius”.
View-dependent displacement mapping. A terrain can be
thought of as a displacement map over trivial planar geometry.
Some recent papers have proposed hardware schemes for adaptive
tessellation of displacement maps [Gumhold and Hüttner 1999;
Doggett and Hirche 2000; Moule and McCool 2002]. So far these
schemes have only been simulated on relatively simple grids, and
they assume that the entire grid is memory-resident.
Textures. There has been less work on handling the huge texture
maps that often accompany terrains. Aside from texture clipmaps
[Tanner et al 1998], the standard approach is texture tiling. More
general texture hierarchies are introduced by Döllner et al [2000].
To our knowledge, none of the prior terrain LOD techniques are
able to achieve significant compression or terrain synthesis.

SIGGRAPH 2004 Submission Geometry Clipmaps (Online ID 0350) Page 3 of 8

Draft – Do not distribute. 2013/04/01 10:23:51 AM geomclipmap_newmath.docx

clip_region(l)

active_region(l)
active_region(l+1)

render_region(l)

clip_region(l+1)

viewer

(cropped)

motion

Figure 2: Regions defined within levels of a geometry clipmap.

3. Geometry clipmap overview
The geometry clipmap caches a terrain pyramid using a set of 𝑚
levels, representing nested extents at successive power-of-two
resolutions (Figure 1). Each level contains an 𝑛×𝑛 array of
vertices, stored as a vertex buffer in video memory. To permit
efficient incremental updates, the array is accessed toroidally, i.e.
with 2D wraparound addressing using mod operations on 𝑥 and 𝑦.
Each vertex contains (𝑥,𝑦, 𝑧, 𝑧𝑐) coordinates, where 𝑧𝑐 is the
height value at (𝑥,𝑦) in the next-coarser level, and is used for
transition morphing (Section 6.2).
Clipmap regions. For each level 𝑙 of the clipmap, we define a set
of rectangular regions (see Figure 2). The clip region is the world
extent of the 𝑛×𝑛 grid of data stored at that level. The active
region is the extent we wish to render, specifically a square of size
𝑛×𝑛 centered at the viewer. During viewer motion, we update the
clipmap by shifting the clip region of each level such that it
matches the desired active region. However, if this update is too
costly during fast motion, we let the clip region fall behind the
viewer, and then crop the active region to the available data as
illustrated in Figure 2. Finally, the render region itself is the
hollowed frame (shaded in green) whose outer perimeter is
active_region(𝑙) and inner perimeter is active_region(𝑙+1).
For the finest level 𝑚, active_region(𝑚+1) is always defined to
be empty. The active and clip regions are updated as the view
parameters changed, as described in Sections 4 and 5 respectively.
Texture. Each clipmap level also contains associated texture
image(s). We store an 8-bit-per-channel normal map for surface
shading, since this is more efficient than storing per-vertex nor-
mals. For faithful shading, the normal map has twice the
resolution of the geometry, since one normal per vertex is too
blurry [Vlachos et al 2001]. The normal map is computed from
the geometry whenever the clipmap is updated. Additional
images, such as color fields or terrain attributes could also be
stored, possibly at different resolutions. Like the vertex arrays,
textures are accessed toroidally for efficient update.
Per-frame algorithm. The following steps are performed each
frame, and discussed in the following sections:
• Determine the desired active regions (§4).
• Update the geometry clipmap (§5).
• Crop the active regions to the clip regions, and render (§6).

4. Computation of desired active regions
View-dependent refinement is determined by the selection of
active regions for each level of the clipmap. We use a simple
strategy. For each level 𝑙, with grid spacing 𝑔𝑙 = 2−𝑙 in world
space, we let the desired active region be the square of size
𝑛 𝑔𝑙 × 𝑛 𝑔𝑙 centered at the (𝑥,𝑦) location of the viewpoint. In
other words, the desired clipmap is re-centered at the viewer, and
we hope to render the full extent of each level.
Let us consider how screen-space triangle size varies with the
choice of clipmap size 𝑛. For now we assume that the terrain has

small slope, so each triangle is approximately a right triangle of
size 𝑔𝑙. (We provide a more general error analysis in Section 9.)
For any visible world point, screen-space size is
inversely proportional to depth in screen space.
If the view direction is horizontal, screen-space
depth is measured in the 𝑋𝑋 plane. The viewer
lies at the center of render_region(𝑙), which has
outer edge size 𝑛 𝑔𝑙 and an inner edge size
𝑛 𝑔𝑙/2. For a field-of-view 𝜑 = 90°, the average screen-space
depth (over all view directions) is about (0.4)𝑛 𝑔𝑙 . Thus, the
approximate screen-space triangle size 𝑠 in pixels is given by

𝑠 =
𝑔𝑙

(0.4)𝑛 𝑔𝑙
𝑊

2 tan 𝜑
2

= (1.25)
𝑊

𝑛 tan𝜑
2

 ,

where 𝑊 is the window size and 𝜑 is the field of view. For our
default 𝑊=640 pixels and 𝜑=90°, we obtain good results with a
clipmap size 𝑛=255. This corresponds to a screen-space triangle
size 𝑠 of 3 pixels. Since the normal maps are stored at twice the
resolution, this gives approximately 1.5 pixels per texture sample,
which is a reasonable setting for texture sampling.
When the view direction is not horizontal, the screen-space depth
of render_region(𝑙) is larger than the (0.4)𝑛 𝑔𝑙 derived above,
and therefore the screen-space triangle size becomes smaller than
𝑠. If the view looks straight down from high above the terrain,
triangle size is tiny and aliasing becomes evident. The solution is
to disable the rendering of unnecessarily fine levels. Specifically,
we compute the height of the viewer over the terrain by accessing
the finest valid level of the clipmap. For each level 𝑙, the active
region is set to be empty if viewer height is greater than (0.4)𝑛 𝑔𝑙 .
One drawback of the simple viewer-centered regions is that the
clipmap size 𝑛 must grow as the field of view 𝜑 narrows. A
remedy would be to adapt the location and size of clipmap regions
to the view frustum. We instead chose viewer-centered regions
because they let the view instantly rotate about the current view-
point. This is a requirement for many applications such as flight
simulators that let the user look in all directions using a joystick
“hat switch”. We rely on view frustum culling to avoid rendering
terrain that is outside the viewport (Section 6.4).

5. Geometry clipmap update
As the desired active regions shift with the viewer’s motion, the
clip regions should also shift accordingly. Note that with toroidal
access, we do not need to copy the old data when shifting a level.
Instead, we simply fill the newly exposed “𝐿-shaped” region. The
data comes from one of two sources: decompression of explicit
terrain or synthesis of procedural terrain (see Sections 7 and 8).
Usually, coarser levels are filled from decompressed terrain, and
finer levels are synthesized.
When updating the clipmap using either compression or synthesis,
we predict the finer level geometry from the coarser one using an
interpolatory subdivision scheme. We have chosen the tensor-
product version [Kobbelt 1996] of the well-known four-point
subdivision curve interpolant, which has mask weights (–1/16,
9/16, 9/16, –1/16) [Dyn et al 1987]. This upsampling filter 𝑈 has
the desirable property of being 𝐶1 smooth.
An alternative update scheme would be to anticipate future viewer
motion when translating the clip regions, to reduce the frequency
of updates. Because we are able to perform both decompression
and synthesis efficiently on small regions, the granularity of
updates is not currently an important factor.
When the viewer is moving fast, the processing needed to update
all levels can become excessive. As in texture clipmaps, we
update levels in coarse-to-fine order, stopping upon reaching a
given processing budget. We have chosen to stop if the total

(0.25)

(0.707)

SIGGRAPH 2004 Submission Geometry Clipmaps (Online ID 0350) Page 4 of 8

Draft – Do not distribute. 2013/04/01 10:23:51 AM geomclipmap_newmath.docx

number of updated samples exceeds 𝑛2. Because the clip regions
in the non-updated (finer) levels fall behind, they gradually crop
the associated active regions, until these become empty. The
effect is that the fast-moving (near-viewer) terrain loses its high-
frequency detail. An interesting consequence is that rendering
load actually decreases as the viewer moves faster.
We enforce the following constraints on the clipmap regions:
(1) clip_region(𝑙+1) ⊆ clip_region(𝑙) ⊖ 1, where ⊖ denotes
erosion by a scalar distance. We need the clip regions to be nested
for coarse-to-fine geometry prediction. The prediction requires
maintaining one grid unit on all sides.
(2) active_region(𝑙) ⊆ clip_region(𝑙), since the rendered data
must be a subset of the data present in the clipmap.
(3) the perimeter of active_region(𝑙) must lie on “even” vertices,
to enable a watertight boundary with coarser level 𝑙–1.
(4) active_region(𝑙+1) ⊆ active_region(𝑙) ⊖ 2, since the
render region must be at least two grid units wide to allow a
continuous transition between levels.

6. Geometry clipmap rendering

6.1 Basic rendering algorithm
Given the desired active regions, we render the terrain using the
following algorithm:

// Crop the active regions.
foreach level 𝑙 ∈ [1,𝑚] in coarse-to-fine order:
 Crop active_region(𝑙) to clip_region(𝑙)
 Crop active_region(𝑙) to active_region(𝑙 − 1) ⊖ 2
// Render all levels
foreach level 𝑙 ∈ [1,𝑚] in fine-to-coarse order:
 render_region(𝑙) := active_region(𝑙) – active_region(𝑙 + 1)
 Render render_region(𝑙)

The active regions are cropped to the clip regions and coarser
active regions to satisfy constraints (2–4) from Section 5. Note
that if active_region(𝑘) is empty, then by construction all finer
active_region(𝑙), 𝑙 > 𝑘 are also empty. It is quite common for
the finer levels to have empty active regions, either because their
clip regions have not been updated in time (i.e. the viewer is
moving fast), or because finer tessellations are unwarranted (i.e.
the viewer is sufficiently high above the terrain).
Since finer levels are closer to the viewer, we render levels in
fine-to-coarse order to exploit any hardware occlusion culling.
The render_region(𝑙) is partitioned into 4 rectangular regions
which are rendered using triangle strips as illustrated in Figure 3.
The maximum strip length is selected for optimal vertex caching
[Hoppe 1999], and strips are grouped together to form large
batched primitives. The grid-sequential memory access behaves
well at all levels of the video memory hierarchy. Currently, the
2D toroidal access requires CPU recomputation of vertex indices
every frame, but this is a small overhead and will go away shortly.

Figure 3: Illustration of triangle strip generation within a render
region. (In reality, the strips are up to ~20 triangles in length.)

6.2 Transition regions for visual continuity
The simple algorithm described so far suffers from gaps between
the render regions at different levels, due to the power-of-two
mismatch at the boundaries. To both eliminate the gaps and
provide temporal continuity, we morph the geometry near the
outer boundary of each render_region(𝑙) such that it transitions
to the geometry of the coarser level 𝑙–1. The morph is a function
of the spatial (𝑥,𝑦) grid coordinates of the terrain vertices relative
to those of the viewpoint �𝑣𝑥, 𝑣𝑦�. Thus the transition is not time-
based but instead tracks the continuous viewer position.
Through experimentation, we have found that a transition width 𝑤
of 𝑛/10 grid units works well. If 𝑤 is much smaller, the level
boundaries become apparent. And if 𝑤 is much larger, fine detail
is lost unnecessarily. If the finer active_region(𝑙+1) is too close,
we set 𝑤 = min�𝑛/10, min_width(𝑙)�, where min_width(𝑙) is
known to be at least 2 (see Figure 4).
Recall that each vertex stores (𝑥,𝑦, 𝑧, 𝑧𝑐), where 𝑧𝑐 is the terrain
height in the next-coarser level 𝑙–1. We obtain the morphed
elevation as

𝑧′ = (1 − 𝛼)𝑧 + 𝛼𝑧𝑐 ,

where blend parameter 𝛼 is computed as 𝛼 = max�𝛼𝑥,𝛼𝑦� with

𝛼𝑥 = min�max���𝑥 − 𝑣𝑥𝑙 � − �
𝑥max − 𝑥min

2 −𝑤 − 1�� 𝑤� , 0� , 1�

and similarly for 𝛼𝑦. Here �𝑣𝑥𝑙 , 𝑣𝑦𝑙 � denote the continuous coordi-
nates of the viewpoint in the grid of clip_region(𝑙), and 𝑥min and
𝑥max the integer extents of active_region(𝑙). The desired property
is that 𝛼 evaluates to 0 except in the transition region where it
ramps up linearly to reach 1 at the outer perimeter. These evalua-
tions are performed in the GPU vertex shader using about 10
instructions, so they add little to the rendering cost.
T-junction removal. Although the geometry transitions elimi-
nate gaps, the T-junctions along the boundaries still result in
dropped pixels during rasterization. To stitch adjacent levels into
a watertight mesh, we use the simple solution of rendering zero-
area triangles along the render region boundaries.

 (0, 0)

(n-1, n-1)

(xmin,ymin)

clip_region(l) active_region(l)

active_region(l+1)
viewer

min_width(l)

(xmax,ymax)

(vx, vy)

(xmin,ymin)

transition_region(l)

Figure 4: A transition region near the outer boundary lets level 𝑙
smoothly blend with the next coarser level 𝑙–1.

6.3 Texture mapping
Recall that each clipmap level also stores texture images for use in
rasterization (e.g. a normal map in our system).
One option would be to let hardware mipmapping control texture
LOD. The texture at each clipmap level would have its own
mipmap pyramid, thus requiring 33% more memory. Note that
the coarser mipmap levels in this pyramid correspond exactly with
sub-regions in coarser clipmap levels, so ideally they should be
shared as in texture clipmaps [Tanner et al 1998], but we lack this
hardware capability. More significantly, there is a practical
problem with letting the hardware control the mipmap level. If

SIGGRAPH 2004 Submission Geometry Clipmaps (Online ID 0350) Page 5 of 8

Draft – Do not distribute. 2013/04/01 10:23:51 AM geomclipmap_newmath.docx

the resolution of the stored texture is not sufficiently high, a sharp
transition in texture resolution becomes evident at the render
region boundaries, because the mipmap level has not reached the
next coarser level. These sharp transitions are visible during
viewer motion as “advancing fronts” over the terrain surface.
Instead, we propose an alternate solution. We disable mipmap-
ping altogether, and perform LOD on the texture using the same
spatial transition regions applied to the geometry. Thus texture
LOD is based on viewer distance rather than on screen-space
derivatives as in hardware mipmapping. The main element lost in
this approximation is the dependence of texture LOD on surface
orientation. When a surface is oriented obliquely, one can no
longer access a coarser mipmap level to prevent aliasing. Howev-
er, graphics hardware commonly supports anisotropic filtering,
whereby more samples are combined from the original finest
level. Consequently, the absence of mipmaps is not a practical
issue for surface orientation dependence.
The spatially based texture LOD scheme is easily implemented in
the GPU pixel shader. When rendering level 𝑙, we provide the
shader with the textures from levels 𝑙 and 𝑙–1, and blend these
using the same 𝛼 parameter already computed in the vertex shader
for geometry transitions. Figure 5 shows an example.

No transitions (gaps) Blend regions (𝛼)

Geometry transitions Geometry + texture transitions

Figure 5: Visual continuity achieved with transition morphs
(demonstrated with a low-resolution clipmap of size 𝑛=127).

6.4 View-frustum culling
We apply view frustum culling as follows. For each level of the
clipmap, we maintain 𝑧min, 𝑧max bounds for the local terrain.
Recall that each render region is partitioned into 4 rectangular
regions. Each 2D rectangular extent is extruded by the terrain
bounds [𝑧min, 𝑧max] to form an axis-aligned bounding box. We
intersect this box with the 4-sided pyramid of the view frustum,
and project the resulting convex set into the 𝑋𝑋 plane. The axis-
aligned rectangle bounding this set is used to crop the given
rectangular region (Figure 6). View frustum culling reduces
rendering load by a factor of about 3 for a 90° field of view.

Figure 6: Result of view frustum culling (viewed from above).

7. Terrain compression
Height maps are remarkably coherent in practice, significantly
more so than typical color images, and thus offer a huge oppor-
tunity for compression. To interact efficiently with the geometry
clipmap structure, the decompression algorithm must support
“region-of-interest” (ROI) queries at any power-of-two resolution.
We adopt a simple pyramid compression scheme. We first create
a terrain pyramid 𝑇1 …𝑇𝑚 by successively downsampling the fine
terrain 𝑇𝑚 into coarser levels using a linear filter 𝑇𝑙−1 = 𝐷(𝑇𝑙).
Then, each pyramid level 𝑇𝑙 is predicted from its next coarser
level 𝑇𝑙−1 through interpolatory subdivision 𝑈(𝑇𝑙−1) (Section 5),
and the residual 𝑅𝑙 = 𝑇𝑙 − 𝑈(𝑇𝑙−1) is compressed using an image
coder.1 Since the compression is lossy, 𝑅𝑙 is approximated by 𝑅�𝑙.
Therefore, we reconstruct the levels in coarse-to-fine order as
𝑇�𝑙 = 𝑈�𝑇�𝑙−1� + 𝑅�𝑙, and compress the residuals redefined as
𝑅𝑙 = 𝑇𝑙 − 𝑈�𝑇�𝑙−1�, so that the errors do not accumulate.
Since coarser levels are viewed from afar, our first approach was
to give their approximations 𝑇�𝑙 less absolute accuracy. Specifical-
ly, we would scale the residuals 𝑅𝑙 by 2𝑙−𝑚 prior to quantization.
However, while this is a correct argument for geometric fidelity,
we discovered that this results in poor visual fidelity, because both
the normal map and 𝑧-based coloring then present quantization
artifacts (since they are inferred from the decompressed geome-
try). The solution is to compress all level residuals with the same
absolute accuracy.
The quantized residuals are compressed using the PTC image
coder of Malvar [2000], which has several nice properties for our
purpose. It avoids blocking artifacts by defining overlapping
basis functions, yet the bases are spatially localized to permit
efficient regional decompression. Also, the coder supports images
of arbitrary size (if the encoding fits within 2 GB). Decompres-
sion takes place only during the incremental uploads to video
memory, and is thus sufficiently fast (Table 1).
We are able to implement the compression preprocess within a 32-
bit address space by performing all steps as streaming computa-
tions. For the 40GB U.S. data, the complete procedure from
original terrain 𝑇𝑚 to compressed residuals 𝑅�𝑙 takes about 5
hours, much of which is disk I/O. Section 9 reports the rms of the
compression error 𝑇�𝑚 − 𝑇𝑚. In our experience, the compressed
terrain is visually indistinguishable from the original, except at the
sharp color transition associated with the coastline.
As future work, it would be interesting to compare with a com-
pression scheme like Normal Meshes [Guskov et al 2000] in
which the downsampling filter 𝐷 is an impulse function.

1 We precompute the optimal filter 𝐷 (of size 11×11) such that 𝑈�𝐷(𝑇𝑙)�

gives the best 𝐿2 approximation of 𝑇𝑙, by solving a linear system on a
subset of the given terrain.

SIGGRAPH 2004 Submission Geometry Clipmaps (Online ID 0350) Page 6 of 8

Draft – Do not distribute. 2013/04/01 10:23:51 AM geomclipmap_newmath.docx

8. Terrain synthesis
The geometry clipmap provides a natural structure to generate
detail using either stochastic subdivision [e.g. Fournier et al 1982;
Lewis 1987] or multiresolution texture synthesis [e.g. Wei and
Levoy 2000]. One constraint is that the synthesis process must be
spatially deterministic, so that the same terrain is always created.
We have implemented fractal noise displacement, by adding
uncorrelated Gaussian noise to the upsampled coarser terrain. The
noise variance is scaled at each level 𝑙 to equal that in actual
terrain, i.e. the variance of the residuals 𝑅𝑙 computed in the
previous section. The 𝐶1 smoothness of the interpolatory subdivi-
sion is key to avoiding surface crease artifacts [Miller 1986]. For
efficient evaluation, we store precomputed Gaussian noise values
within a table, and index it with a modulo operation on the vertex
coordinates. A table size of 50×50 is sufficient to remove any
repetitive patterns or recognizable banding (see Figure 7).
We had hoped to implement the synthesis process using GPU
pixel shaders, so that the geometry data would remain entirely in
video memory. Although some GPUs already have the required
“render-to-vertex” capability, it is unfortunately not yet exposed,
so for now we resort to CPU computation. Even so, the runtime
computation is very fast (Table 1).
Procedural synthesis allows the generation of terrains with infinite
extent and resolution, and therefore offers tremendous potential.
In our experience, simple fractal noise is less interesting visually
than measured elevation data, but we are hopeful that more
sophisticated synthesis techniques can lead to realistic landscapes.
The challenge will be to make these techniques fast, spatially
deterministic, and perhaps parallelizable on the GPU.

Coarse geometry + zero detail Coarse geometry + fractal noise

Figure 7: Example of terrain synthesis in finer levels. Of the 11
levels in the clipmap, only the coarsest 3 are stored geometry.

9. Results and discussion
We have experimented with two USGS datasets. The smaller one
is a 16,3852 grid of the Puget Sound area at 10m spacing, with 16-
bit height values at 0.1m vertical resolution. The full-resolution
grid is assigned to level 𝑙=9, such that it has 652 extent at the
coarsest level 𝑙=1.
The larger dataset is a 216,000×93,600 height map of the conter-
minous United States at 30m spacing and 1.0m vertical resolution.
(More precisely, spacing is 1 arc-sec in both longitude and lati-
tude, with extents [126°𝑊, 66°𝑊] × [24°𝑁, 50°𝑁].) In a
clipmap with 𝑚=11 levels, it occupies a 212×93 rectangle at the
coarsest level. (We render it flat even though it is parametrized by
spherical coordinates.)
Figure 8 shows these terrains rendered into a window of size
640×480 pixels, with a field-of-view of 90°. We used a PC with a
3.0 GHz Pentium4 CPU, 1 GB system memory, and an ATI
Radeon 9800XT GPU with 256MB video memory. In addition to
shading the terrain with a normal map, we also apply color with a
simple 1D texture based on the terrain 𝑧 coordinate.

Portion of 16,385×16,385 grid of Puget Sound

Portion of 216,000×93,600 grid of U.S.

Figure 8: The two datasets rendered using geometry clipmaps.

Rendering rate. For 𝑚=11 levels of size 2552, we obtain 120
frames/sec with frustum culling, at a rendering rate of 59 M∆/sec.
(With 4× framebuffer multisampling, it drops to 95 frames/sec.)
By comparison, Lindstrom and Pascucci [2002] report 3 M∆/sec,
and Cignoni et al [2003b] achieve 16 M∆/sec. On present, com-
parable hardware (GeForceFX 5800/5900), these authors now
obtain rates of 21 M∆/sec and 65 M∆/sec respectively.
Update rate. Our threshold processing budget for updating the
clipmap is a full 𝑛×𝑛 level. Table 1 shows the execution times of
the update steps for this worst case. It is likely that these times
overlap with GPU processing. During smooth viewer motions,
the update times are generally less because only fractions of levels
need be updated. In practice, our system maintains a nearly
uniform rate of 60 frames/sec. Note that it will soon be possible
to perform all steps (except for decompression) using the GPU,
thanks to the regular-grid data structure.

Update step Time (msec)
Computation of 𝑧𝑐 2
Interpolatory subdivision 𝑈 3
Decompression or Synthesis 8 or 3
Upload to video memory 2
Normal map computation 11

Total 21 or 26

Table 1: Times for updating a full 𝑛×𝑛 level (𝑛=255).

SIGGRAPH 2004 Submission Geometry Clipmaps (Online ID 0350) Page 7 of 8

Draft – Do not distribute. 2013/04/01 10:23:51 AM geomclipmap_newmath.docx

Error analysis. There are two sources of error, compression error
and LOD error, and we analyze these separately.

Compression error. The Puget Sound dataset is compressed
from 537 MB to 8.5 MB, with an rms error of 1.0m (PSNR =
20 log10(𝑧max/rms) = 72.6dB). The U.S. dataset is compressed
from 40.4 GB to 355 MB, with an rms error of 1.8m
(PSNR=67.7dB). These rms errors are quite small – only about
10% and 6% of the inter-sample spacing, respectively.
Screen-space LOD error. In Section 4, we estimated the screen-
space triangle size 𝑠 for a given clipmap size 𝑛. The analysis
relied on the fact that terrain triangles have compact shape if the
terrain slope is assumed small. If instead the terrain has steep
slope, triangles can become arbitrarily elongated and their screen-
space extent is no longer bounded, which is unsatisfactory.
However, the more relevant measure is the screen-space geomet-
ric error, i.e. the screen-projected difference between the rendered
mesh and the original terrain (Section 2). And, we can analyze
this error if provided knowledge of the spectral properties of the
terrain geometry.
For each terrain level 𝑇𝑙, we are interested in the error function
𝑒𝑙 = PL(𝑇𝑙) − PL(𝑇𝑚) where PL denotes the piecewise linear
mesh interpolant over the (𝑥,𝑦) domain. This function is related
to the (continuous) spectral density of the terrain signal. Since the
grid spacing 𝑔𝑙 in level 𝑙 projects to 𝑠 pixels in screen space, the
screen-space projection of 𝑒𝑙(𝑥,𝑦) at location (𝑥,𝑦) is at most

𝑒̂𝑙(𝑥,𝑦) =
𝑒𝑙(𝑥,𝑦)
𝑔𝑙

𝑠 .

(The error is smaller if the view direction is not horizontal.) Thus,
given a terrain dataset, we compute norms of 𝑒̂𝑙 to estimate the
screen-space error for each rendered level, as shown in Table 2.
The results reveal that the rms screen-space error is smaller than
one pixel. This is not unexpected, since the triangle size 𝑠 is only
3 pixels and the difference between those planar triangles and the
finer detail is generally smaller yet. We find the larger max(𝑒̂𝑙)
error values to be misleading, because the acquired terrain data
contains mosaic misregistration artifacts that create artificial
cliffs, and it only takes one erroneous height value to skew the
statistic. Instead, we prefer to examine the 99.9th percentile error,
and we see that it too is still smaller than a pixel. (See also the
accompanying video.)
In comparison, Cignoni et al [2003b] use the same window size
and a tolerance of 3 pixels. Lindstrom and Pascucci [2002] also
use a 640×480 window, and mention that geomorphs allow the
tolerance to reach 6 pixels without noticeable visual artifacts. The
authors of both these papers report that on present hardware their
schemes can now maintain a screen-space tolerance of 1 pixel.
The error analysis suggests that we could afford to reduce the
clipmap size while still maintaining acceptable geometric fidelity.
However, the true limiting factor is visual fidelity, which in turn
strongly depends on surface shading — this is the basic premise
of normal mapping. Therefore, even if we used coarser geometry,
we would still have to maintain high-resolution normal maps. In
our system, these normal maps are generated from the geometry
clipmap itself. Indeed, the compressed mipmap pyramid can be
seen as an effective scheme for encoding the normal map, with a
secondary benefit of providing carrier geometry.
The non-uniformity of screen-space error 𝑒̂𝑙 across levels could be
exploited by adapting the sizes of individual clipmap levels. For
instance, smooth hills would require a sparser tessellation (in
screen space) on the nearby smooth terrain than on the farther hill
silhouettes. As just discussed, one would have to verify that the

surface shading is not adversely affected. Both the Puget Sound
and U.S. terrain datasets appear to have rather uniform spectral
densities. In the U.S. data, the error begins to diminish at coarse
levels, reflecting the fact that the Earth is smooth at coarse scale.

Level
𝑙

Puget Sound U.S.
rms(𝑒̂𝑙) 𝑃.999(𝑒̂𝑙) max(𝑒̂𝑙) rms(𝑒̂𝑙) 𝑃.999(𝑒̂𝑙) max(𝑒̂𝑙)

1 0.12 0.58 1.27 0.02 0.12 0.30
2 0.14 0.75 1.39 0.04 0.20 0.43
3 0.15 0.86 2.08 0.06 0.32 0.62
4 0.15 0.93 2.50 0.09 0.51 0.96
5 0.14 0.96 3.38 0.12 0.68 1.37
6 0.13 0.94 5.55 0.13 0.78 2.03
7 0.11 0.83 8.03 0.14 0.84 2.59
8 0.11 0.75 14.25 0.13 0.86 4.16
9 0.00 0.00 0.00 0.12 0.90 8.18

10 0.11 0.90 11.70
11 0.00 0.00 0.00

Table 2: Analysis of screen-space geometric error, in pixels.
Columns show rms, 99.9th percentile, and maximum errors.
(𝑛=255, 𝑊=640, 𝜑=90°, i.e. 𝑠=3).

Space requirement. For the U.S. dataset, the number of levels is
𝑚=11, and the compressed terrain occupies 355 MB in system
memory. For our default clipmap size 𝑛=255, the geometry
clipmap needs 16𝑚𝑛2=11 MB in video memory for the vertex
geometry. (Since we cannot yet do level prediction on the GPU,
we also replicate the 𝑧 height data in system memory, requiring
4𝑚𝑛2=3 MB.) The normal maps have twice the resolution, but
only 2 bytes/sample, so need an additional 8𝑚𝑛2=6 MB. Thus,
overall memory use is about 375 MB, or only 0.02 bytes/sample.
As shown in Table 3, our space requirement is significantly less
than in previously reported results. Since the data fits within the
memory of a standard PC, we avoid runtime disk accesses.

LOD scheme Grid size Num. of
samples

Runtime
space

Bytes/
sample

Hoppe [1998] 4K×2K 8M 50 MB 6.0

Lindstrom [2002] 16K×16K 256M 5.0 GB 19.5

Cignoni et al [2003a] 8K×8K 64M 115 MB 1.8

Cignoni et al [2003b] 6×133132 1G 4.5 GB 4.5

Geometry clipmaps
16K×16K 256M 25 MB 0.10

216K×94K 20G 375 MB 0.02

Table 3: Comparison of runtime space requirements. Prior
methods also require storage of a normal map for surface shad-
ing (which is not included here), whereas ours is computed on-
the-fly from the decompressed geometry.

Precision. For 𝑚=11 levels, floating-point precision is not yet an
issue. To allow an arbitrary number of levels, a simple solution is
to transform the viewpoint and view matrix into the local coordi-
nate system of each clipmap level (using double precision as in
[Cignoni et al 2003b]).

Networked viewer. The compressed terrain pyramid residuals 𝑅�𝑙
could be stored on a server and streamed incrementally (based on
user motion) to a lightweight client. The necessary bandwidth is
small since the compression factor is on the order of 60-100.

SIGGRAPH 2004 Submission Geometry Clipmaps (Online ID 0350) Page 8 of 8

Draft – Do not distribute. 2013/04/01 10:23:51 AM geomclipmap_newmath.docx

10. Summary and future work
A pre-filtered mipmap pyramid is a natural representation for
terrain data. We present geometry clipmaps, which cache nested
rectangular extents of this pyramid to create view-dependent
approximations. A unique aspect of the framework is that LOD is
independent of the data content. Therefore the terrain data does
not require any precomputation of refinement criteria. Together
with the simple grid structure, this allows the terrain to be created
lazily on-the-fly, or stored in a highly compressed format. Neither
of these capabilities has previously been available.
We demonstrate interactive flight over a 20-billion sample grid of
the U.S., stored in just 355 MB of memory and incrementally
decompressed at 60 frames/sec. The decompressed data has an
rms error of 1.8 meters over the U.S. The view-dependent LOD
has a screen-space error whose 99.9th percentile is smaller than
one pixel, and the rendering is temporally smooth.
The representation of geometry using regular grids should become
even more attractive as vertex and image buffers become unified.
This unification will enable the highly parallel GPU rasterizer to
process geometry in addition to images. An earlier solution will
be to use vertex textures (e.g. as in DirectX9 Vertex Shader 3.0) to
toroidally access geometry images [Gu et al 2002], thereby
greatly simplifying implementation of geometry clipmaps.
Geometry clipmaps unify the LOD management of the terrain
geometry and its associated texture signals. The spatially based
LOD structure lets low-resolution textures be applied without
visual discontinuities at level boundaries. Beyond our runtime
creation of normal maps, we envision that non-local functions
such as shadow maps can be similarly computed in a lazy fashion.
Geometry clipmaps present many more avenues for future work:
• Improved terrain synthesis, e.g. using machine learning.
• Geometry synthesis on the GPU, e.g. [Losasso et al 2003].
• Procedural terrain overlays.
• Runtime terrain modification.
• Terrain collision detection within the GPU.
• GPU-based decompression of geometry images.
• Extension to a spherical domain, e.g. [Cignoni et al 2003b].

Acknowledgments
We thank Rico Malvar and Erin Renshaw for the PTC image
compression library, the Flight Simulator Group for obtaining the
U.S. elevation data, and Peter Lindstrom for preparing the Puget
Sound dataset. Thanks also to Cignoni, Gobbetti, and Lindstrom
for testing their terrain LOD schemes on comparable hardware.

References
BISHOP, L., EBERLY, D., WHITTED, T., FINCH, M., AND SHANTZ, M. 1998.

Designing a PC game engine. IEEE CG&A 18(1), 46-53.
BLOW, J. 2000. Terrain rendering at high levels of detail. Proc. 2000

Game Developers Conference.
CIGNONI, P., PUPPO, E., AND SCOPIGNO, R. 1997. Representation and

visualization of terrain surfaces at variable resolution. The Visual
Computer 13(5), 199-217.

CIGNONI, P., GANOVELLI, F., GOBBETTI, E., MARTON, F., PONCHIO, F., AND
SCOPIGNO, R. 2003a. BDAM – Batched dynamic adaptive meshes for
high performance terrain visualization. Computer Graphics Forum
22(3).

CIGNONI, P., GANOVELLI, F., GOBBETTI, E., MARTON, F., PONCHIO, F., AND
SCOPIGNO, R. 2003b. Planet-sized batched dynamic adaptive meshes
(P-BDAM). IEEE Visualization 2003.

COHEN-OR, D., AND LEVANONI, Y. 1996. Temporal continuity of levels of
detail in Delaunay triangulated terrain. IEEE Visualization. 37-42.

DE FLORIANI, L, MAGILLO, P. AND PUPPO, E. 1997. Building and travers-
ing a surface at variable resolution. IEEE Visualization 1997, 103-110.

DOGGETT, M, AND HIRCHE, J. 2000. Adaptive view-dependent tessella-
tion of displacement maps. Graphics Hardware Workshop, 59-66.

DÖLLNER, J., BAUMANN, K., AND HINRICHS, K. 2000. Texturing tech-
niques for terrain visualization. IEEE Visualization 2000, 227-234.

DYN, N., GREGORY, J., AND LEVIN, D. 1987. A 4-point interpolatory
subdivision scheme for curve design, CAGD 4, 257-268.

DUCHAINEAU, M., WOLINSKY, M., SIGETI, D., MILLER, M., ALDRICH, C.,
AND MINEEV-WEINSTEIN, M. 1997. ROAMing terrain: Real-time op-
timally adapting meshes. IEEE Visualization 1997, 81-88.

EL-SANA, J., AND VARSHNEY, A. 1999. Generalized view-dependent
simplification. Proceedings of Eurographics 1999, 83-94.

FOURNIER, A., FUSSELL, D., AND CARPENTER, L. 1982. Computer
rendering of stochastic models. Comm. of the ACM 25(6), 371-384.

GU, X., GORTLER, S., AND HOPPE, H. Geometry images. ACM SIG-
GRAPH 2002, 355-361.

GUSKOV, I., VIDIMČE, K., SWELDENS, W., AND SCHRÖDER, P. Normal
meshes. SIGGRAPH 2000, 95-102.

GUMHOLD, S., AND HÜTTNER, T. 1999. Multiresolution rendering with
displacement mapping. Graphics Hardware Workshop 1999.

HITCHNER, L., AND MCGREEVY, M. 1993. Methods for user-based
reduction of model complexity for Virtual Planetary Exploration.
Proc. SPIE 1913, 622-636.

HOPPE, H. 1998. Smooth view-dependent level-of-detail control and its
application to terrain rendering. IEEE Visualization 1998, 35-42.

HOPPE, H. 1999. Optimization of mesh locality for transparent vertex
caching. ACM SIGGRAPH 1999, 269-276.

KOBBELT, L. 1996. Interpolatory subdivision on open quadrilateral nets
with arbitrary topology. Eurographics 1996, 409-420.

LEVENBERG, J. 2002. Fast view-dependent level-of-detail rendering
using cached geometry. IEEE Visualization 2002, 259-266.

LEWIS, J. 1987. Generalized stochastic subdivision. ACM Transactions
on Graphics 6(3), 167-190.

LINDSTROM, P., KOLLER, D., RIBARSKY, W., HODGES, L., FAUST, N., AND
TURNER, G. 1996. Real-time, continuous level of detail rendering of
height fields. ACM SIGGRAPH 1996, 109-118.

LINDSTROM, P., AND PASCUCCI, V. 2002. Terrain simplification simpli-
fied: A general framework for view-dependent out-of-core
visualization. IEEE TVCG 8(3), 239-254.

LOSASSO, F., HOPPE, H, SCHAEFER, S., AND WARREN, J. 2003. Smooth
geometry images. Symposium on Geometry Processing 2003, 138-145.

MALVAR, H. 2000. Fast Progressive Image Coding without Wavelets.
Data Compression Conference (DCC '00), 243-252.

MILLER, G. 1986. The definition and rendering of terrain maps. ACM
SIGGRAPH 1986, 39-48.

MOULE, K., AND MCCOOL, M. 2002. Efficient bounded adaptive tessella-
tion of displacement maps. Graphics Interface 2002.

PAJAROLA, R. 1998. Large scale terrain visualization using the restricted
quadtree triangulation. IEEE Visualization 1998, 19-26.

RABINOVICH, B., AND GOTSMAN, C. 1997. Visualization of large terrains
in resource-limited computing environments. IEEE Visualization.

RÖTTGER, S., HEIDRICH, W., SLUSALLEK, P., AND SEIDEL, H.-P. 1998.
Real-time generation of continuous levels of detail for height fields.
Central Europe Conf. on Computer Graphics and Vis., 315-322.

TANNER, C., MIGDAL, C., AND JONES, M. 1998. The clipmap: A virtual
mipmap. ACM SIGGRAPH 1998, 151-158.

VLACHOS, A., PETERS, J., BOYD, C., AND MITCHELL, J. 2001. Curved PN
triangles. Symposium on Interactive 3D Graphics, 159-166.

WEI, L, AND LEVOY, M. Fast texture synthesis using tree-structured vector
quantization. ACM SIGGRAPH 2000, 479-488.

WAGNER, D. 2004. Terrain geomorphing in the vertex shader. In
ShaderX2: Shader Programming Tips & Tricks with DirectX 9. Word-
ware Publishing.

WILLIAMS, L. 1983. Pyramidal parametrics. ACM SIGGRAPH. 1-11.

	1. Introduction
	2. Previous terrain LOD techniques
	3. Geometry clipmap overview
	4. Computation of desired active regions
	5. Geometry clipmap update
	6. Geometry clipmap rendering
	6.1 Basic rendering algorithm
	6.2 Transition regions for visual continuity
	6.3 Texture mapping
	6.4 View-frustum culling

	7. Terrain compression
	8. Terrain synthesis
	9. Results and discussion
	10. Summary and future work
	Acknowledgments
	References

