
Freeform Vector Graphics with Controlled Thin-Plate Splines

Mark Finch John Snyder Hugues Hoppe
Microsoft Research

Figure 1: We build on thin-plate splines to enrich vector graphics with a variety of powerful and intuitive controls.

Abstract

Recent work defines vector graphics using diffusion between col-
ored curves. We explore higher-order fairing to enable more nat-
ural interpolation and greater expressive control. Specifically, we
build on thin-plate splines which provide smoothness everywhere
except at user-specified tears and creases (discontinuities in value
and derivative respectively). Our system lets a user sketch discon-
tinuity curves without fixing their colors, and sprinkle color con-
straints at sparse interior points to obtain smooth interpolation sub-
ject to the outlines. We refine the representation with novel con-
tour and slope curves, which anisotropically constrain interpolation
derivatives. Compound curves further increase editing power by ex-
panding a single curve into multiple offsets of various basic types
(value, tear, crease, slope, and contour). The vector constraints are
discretized over an image grid, and satisfied using a hierarchical
solver. We demonstrate interactive authoring on a desktop CPU.

Keywords: bilaplacian/biharmonic PDE, slope/contour curves

Links: DL PDF WEB VIDEO DATA CODE

1 Introduction

Traditional vector graphics fills each closed shape independently
with a simple color function. Recent work applies more global
and powerful Laplacian interpolation between diffusion curves with
colors on each side [Orzan et al. 2008; Jeschke et al. 2009].

A Laplacian solution yields a membrane function which is “as-
constant-as-possible”. Its low-order smoothness objective has
drawbacks as illustrated in Figure 2. The solution is smooth only
away from constrained points. Value constraints yield tent-like
responses at isolated points and form creases along curves. The
Laplacian objective is also incompatible with derivative constraints,
because it already seeks zero first-derivatives everywhere in all
directions. Only a higher-order notion of smoothness supports
sparse constraints on directional derivatives.

Our approach builds on thin-plate splines (TPS) [Courant and
Hilbert 1953], which define a higher-order interpolating function
that is “as-harmonic-as-possible”. This smoothness objective
overcomes previous limitations (Figure 2). Thin-plate splines
have been applied in several areas including geometric modeling
[e.g. Welch and Witkin 1992; Botsch and Kobbelt 2004; Sorkine
and Cohen-Or 2004; Botsch and Sorkine 2008], computer vision
[Terzopoulos 1983], and machine learning [Bookstein 1989]. They
have also been adapted to allow discontinuity control with explicit
tears and creases [Terzopoulos 1988]. We extend these controls and
demonstrate their usefulness in vector graphics authoring.

In the simplest case, an artist sketches some outlines (tears) without
fixing their colors, and specifies color constraints at a few interior
points or curves to obtain a smooth color wash within the outlines.
This ink-and-paint ordering of tasks is similar to hand drawing.
The result is then refined by adding creases, contour curves, slope
curves, and critical points. These features increase editing power
by anisotropically constraining interpolation derivatives (e.g. along
or across the curves, or in both directions).

In addition to the basic curves, we introduce compound curves, with
user-assigned widths, for more complex effects. These internally
yield several offset curves, of possibly different types. For instance,
a value-slope curve juxtaposes the two basic types to create a
smooth ridge-like feature. A wide contour uses two offset contours
to form a constant-colored strip without fixing its color. Other
combinations produce a variety of interesting and useful results.

We demonstrate a prototype system based on these ideas. Like other
variational approaches such as diffusion curves, our system is easy
to use and supports “freeform” input based on a general network of
curves, which we augment with points. Smoother interpolation and
more flexible constraints enhance naturalness and editing power
and produce rich results from a compact input (Figure 1).

Our contributions include:

• Extension of the diffusion curves framework to benefit from
higher-order interpolation and general discontinuity control.

• A discretized least-squares kernel for accurate modeling of
crease curves.

• Contour and slope curves that constrain derivatives anisotropi-
cally for intuitive control.

• A variety of compound curve types for added expressiveness.

• Discontinuity-aware upsampling for improved accuracy in a
multiresolution setting.

http://doi.acm.org/10.1145/2024156.2024200
http://portal.acm.org/ft_gateway.cfm?id=2024200&type=pdf
http://research.microsoft.com/en-us/um/redmond/projects/freeform/
http://research.microsoft.com/en-us/um/redmond/projects/freeform/freeform_video.mp4
http://research.microsoft.com/en-us/um/redmond/projects/freeform/
http://research.microsoft.com/en-us/um/redmond/projects/freeform/


(a) input (b) Laplacian diffusion (c) thin-plate spline

Figure 2: When expressing 2D vector graphics using PDEs,
Laplacian solutions yield derivative discontinuities at constraints,
while thin-plate splines interpolate smoothly except where creases
are explicitly specified. The inputs here include tear-value (solid
gray with superimposed black), value (solid gray), and slope-value
(hatched gray) curves, as well as point-value constraints (circles).

2 Related Work

Vector graphics and diffusion Sun et al. [2007] optimize gra-
dient meshes, regular quadrilateral meshes comprised of parametric
patches, to semi-automatically fit a vector description to an image.
In diffusion curves (DCs), Orzan et al. [2008] constrain colors on
either side of specified curves and solve Laplace’s equation ∆u=0
to interpolate between them. This offers several benefits. A general
curve network is more flexible and easier to manage than a regular
quad mesh. DCs also represent color discontinuities explicitly, and
specify interpolation more compactly than a mesh of parametric
patches, at a greater but still affordable computational cost.

Bezerra et al. [2010] describe extensions to let the user guide
interpolation: definition of colors in homogeneous (projective)
space, and anisotropic control over the diffusion process using an
orientation field obtained in a separate diffusion step. Jeschke
et al. [2009] and Hnaidi et al. [2010] apply diffusion curves
to the geometric modeling of terrains and displaced surfaces.
The Laplacian operator makes it difficult to specify features like
mountains and valleys without introducing creases. Takayama et al.
[2010] generalize the Laplacian framework to diffusion surfaces for
volumetric modeling.

DCs developed from earlier work that applied Laplacian diffusion
to image synthesis [e.g. Bertalmio et al. 2000; Johnston 2002;
Pérez et al. 2003]. A function is sought that is harmonic
(∆u = 0) except at constraint points. Because the solution’s
Laplacian ∆u is nonzero at the points themselves, value constraints
yield undesirable, tent-like artifacts. The fact that smoothness
can be realized by solving a similar, but higher-order, quadratic
minimization problem is well-known in geometric modeling but has
received little application so far for 2D vector graphics.

Motivation for TPS Fundamentally, approaches based on
second-order PDEs, including DCs and Laplacian diffusion,
(1) cannot obtain smooth local minima/maxima, (2) lose derivative
continuity wherever a new DC is inserted even if its color values
are identical on both sides, and (3) cannot directly control inter-
polation derivatives. The higher-order approach of TPS addresses
these limitations elegantly and seamlessly.

using diffusion curves using thin-plate splines

Figure 3: Using thin-plate interpolation, a complex shape can be
smoothly filled using just a few color constraints at interior points.

Unintended discontinuities that arise in DCs can be smoothed
through post-process image blurring [Orzan et al. 2008]. This
requires its own set of user handles, and does not allow explicit
control over the value or position of color extrema. In the sphere
example (top row) of Figure 2 it is unclear how blurring can alter
the single highlight point from its tent-like response with diffusion
to the smooth, diffusely-shaded appearance obtained with TPS.
Our method allows direct specification of the location of shading
highlights with slope curves or critical points.

Bezerra et al. [2010] observe that specifying colors along entire
diffusion curves can lead to “tedious and nonintuitive interactions”.
One example is when filling an irregular region with a smooth
function. The user must evaluate the function along the boundary
and store the resulting colors at all curve control points. If the
boundary is edited, these colors must also be updated to reproduce
the same fill function. With TPS, one need only insert a few interior
constraints to smoothly extrapolate up to the boundary, regardless
of its complexity. Two or three interior constraint points yield a
linear gradient within any shape.1 Additional points produce fill
functions that are more complex but still smooth (Figure 3).

Biharmonic interpolation A biharmonic formulation allows
smoothly interpolated constraints. Such solutions are also de-
scribed as least-squares harmonic or thin-plate splines (see Sec-
tion 3). An analytic solution exists for the special case of soft point-
value constraints; in 2D it involves a global affine transformation
plus a weighted sum of radial basis functions φ(r) = r2 log r in
terms of the distance r around each constraint point [Duchon 1977;
Wahba 1990].

Georgiev [2004] designs the Healing Brush in Photoshop using bi-
harmonic interpolation (∆2u = 0) to smoothly fill a selected im-
age region based on Cauchy (fixed value and derivative) boundary
conditions. This avoids boundary derivative discontinuities but sup-
ports only this one type of boundary condition.

In geometric modeling work, Welch and Witkin [1992] introduce
an objective based on thin-plate splines for variational surface
modeling. Sorkine and Cohen-Or [2004] reconstruct triangle
meshes from their connectivity and a set of sparse point constraints
by minimizing the least-squares Laplacian. Botsch and Kobbelt
[2004] use the thin-plate spline functional as well as higher-order
curvature constraints on the domain boundary. Constraints similar
to our value and crease-value curves can be specified in the interior.
Joshi and Carr [2008] adapt this approach to automatically inflate
2D vector art with 3D geometry. Fisher et al. [2007] create
smooth vector fields on meshes by minimizing a weighted least-
squares harmonic subject to constraints. Jacobson et al. [2010]

1The TPS objective term, T [u] from Section 3, yields 0 (minimum)
energy for any global affine function u(x, y) = ax+ by + c.



explore general boundary and derivative constraints in biharmonic
functions on FEM meshes.

Our approach differs from applications of thin-plate splines in
geometric modeling in that we discretize over a regular pixel grid
rather than an irregular mesh. Like Terzopoulos [1988], we remove
discretized first- and second-derivative penalties near specified
vector curves to allow for tears and creases. We add new constraints
on first derivatives along or across curves (contours and slopes).

3 Overview

We let the user draw a variety of features, geometrically represented
by isolated points or quadratic B-spline curves. Depending on its
attributes, each feature (1) reduces continuity of the solution, and/or
(2) constrains its values and derivatives. In the absence of features,
our objective is based on a thin-plate spline (TPS).

We first define this objective in the continuous domain. Given
a continuous and differentiable bivariate scalar function u(x, y),
and its gradient ∇u = (ux, uy), the Laplacian and bilaplacian
differential operators are defined via

∆u = ∇ · ∇u = uxx + uyy,

∆2u = ∆(∆u) = uxxxx + 2uxxyy + uyyyy.

Solutions that satisfy the PDEs ∆u = 0 and ∆2u = 0 are
called harmonic and biharmonic respectively. Using the calculus
of variations, these are obtained as minimizers of two respective
objectives:

u∗ = arg min
u

∫∫
(∇u · ∇u) dx dy ⇒ ∆u∗ = 0, and

u∗ = arg min
u

∫∫
T [u] dx dy ⇒ ∆2u∗ = 0, where

T [u] = (uxx)2 + 2 (uxy)2 + (uyy)2,

within a 2D domain with suitable boundary conditions (e.g.,
Dirichlet for the first, Cauchy for the second). The membrane
(Laplacian) functional satisfies the first equation while the thin-
plate spline satisfies the second. The same TPS solution also results
from a different objective formulation [Botsch and Sorkine 2008]:

T̃ [u] = (∆u)2 = (uxx + uyy)2,

which justifies referring to TPS as “least-squares harmonic”.

The continuous TPS objective can be discretized directly via

min
u

∑
i,j

(D2
xx[u])i,j + 2(D2

xy[u])i,j + (D2
yy[u])i,j

where i indexes pixel columns (x position) and j indexes rows
(y position). The necessary discrete kernels are shown in
Figure 4. For example, Dxx[u] corresponds to an (unscaled)
central-difference approximation of the second derivative uxx:

(Dxx[u])i,j = −ui−1,j + 2ui,j − ui+1,j .

The TPS minimum is reached by setting the partial derivative with
respect to each pixel ui,j (shown in red) to zero, resulting in the
discretized biharmonic condition ∆2u = 0.

The membrane function is similarly discretized in terms of first-
order kernels:

min
u

∑
i,j

(D2
x[u])i,j + (D2

y[u])i,j .

Figure 4: Discrete kernels for least-squares smoothness penalties.
Away from constraints, first-order differences (left) result in a
Laplacian kernel at each pixel, and second-order differences
(middle) result in a bilaplacian kernel. For anisotropic control, we
introduce a generalized first-order difference (upper-right).

The minimum of this objective by itself yields the discretized
harmonic condition, ∆u = 0.

One of our contributions is to introduce a generalized first-
difference kernel, Dt̂, to control the interpolation derivative in a
given, non-axis-aligned, unit-length direction t̂ = (t̂x, t̂y). The
continuous operator represents directional derivative ∇u · t̂. The
corresponding discrete operator Dt̂[u], shown in Figures 4 and 9b,
involves a triplet of pixel values:

(Dt̂[u])i,j = t̂x (ui+1,j − ui,j) + t̂y (ui,j+1 − ui,j).

The squared objective,D2
t̂ , thus penalizes a nonzero first-derivative

in the direction t̂, and leaves unconstrained the derivative in the
orthogonal direction t̂⊥ = (−t̂y, t̂x).

Finally let P = {(xk, yk, vk)} denote the set of value constraints,
where we desire u(xk, yk) to attain the value vk.

Combining these objectives as well as a diagonal regularization
based on the sum of squares of all pixel values ui,j , we minimize
the following linear least-squares function:

E(u) = w2

(∑
(Dxx)2 + 2

∑
(Dxy)2 +

∑
(Dyy)2

)
+

w1

(∑
(Dx)2 +

∑
(Dy)2

)
+ w0‖u‖2+ (1)

wt̂

(∑
(Dt̂)

2
)

+ wp

(∑
(u(xk, yk)− vk)2

)
= ‖Lu− c‖2

where L is a sparse rectangular matrix. Its coefficients are spatially
uniform and based on the thin-plate kernel, except where constraint
or discontinuity features add, omit, or reweight individual terms as
will be described in Section 4. The two terms with weights w1, w0

are regularizing functions as discussed in Section 5. Minimizing the
resulting quadratic energy is equivalent to solving the symmetric
linear system LTLu = LT c, denoted Au = b.

We use traditional raster-scan pixel ordering. The matrix A is
sparse with at most 13 nonzero coefficients per row, compared to 5
for a Laplacian system. It is also block pentadiagonal with a span
of ±2nx nonzero elements away from the diagonal, where nx is
the image resolution in x. This compares to block tridiagonal and a
diagonal span of ±nx for the Laplacian case.



*

*

input tear crease slope contour value

Figure 5: Basic feature examples. Each row introduces a differently-shaped curve: a radial segment (top), a concentric circle (middle),
and a “6”-shape (bottom). Columns show the effect of changing this curve’s basic type. Without any curve, the background is a circularly
symmetric interpolation between a bright central point and a dark outer rim. The two results marked by an asterisk (radial slope and circular
contour) leave the solution unchanged, as expected. The value curve (rightmost column) is colored green to isolate its effect.

Point type Implementation

point value add a bilinear value constraint on the 4 nearest pixels
critical point add Dx, Dy penalties on edges between 4 nearest pixels

Curve type Implementation

tear (T) remove Dxx,Dxy ,Dyy penalties that straddle the curve
crease (C) same, plus add Dt̂⊥ penalties like (S) below
slope (S) add Dt̂⊥ penalties in the curve normal direction t̂⊥

contour (N) add Dt̂ penalties in the curve tangent direction t̂

value (V) add linear value constraints on all grid edge crossings

Figure 6: Basic features and their effects in the discretization.

4 Features

We next describe how various features modify the objective
function. As will be discussed later, minimization is computed
with a coarse-to-fine hierarchical solver, so features are discretized
separately into the grid at each resolution level.

4.1 Basic Features

Basic features consist of point values, critical points, and five
curve types summarized in Figure 6 and shown in Figure 5. The
value curve constrains color along its entire length, leaving thin-
plate smoothness undisturbed. Tear and crease curves introduce
discontinuities by removing smoothness penalties straddling the
curve. The crease differs from a tear in that it preserves C0

continuity. Contour and slope curves zero the first derivatives in
the curve tangent or normal direction respectively. Intuitively, a
contour is a curve of constant value, while a slope is a curve of
steepest ascent (i.e. an integral curve of the gradient) and remains
perpendicular to contours.

Figure 7 shows an example where a slope curve is used to precisely
locate the solution’s “ridge line” maxima, corresponding to a

input value only (V) slope-value (SV)

Figure 7: A slope-value curve forces the solution to interpolate
with a zero cross-curve derivative. Here it explicitly specifies the
position and value of intensity maxima in a shading highlight.

input without curve with contour curve

Figure 8: A contour curve shapes the interpolated solution by
constraining it to be constant along its extent.

shading highlight. Similarly, Figure 8 shows how a contour curve
reshapes the interpolating function, by controlling its gradient
direction without specifying additional values.

Rasterization Point and curve features are “rasterized” into the
pixel grid as follows. Point value constraints use bilinear weights
on the four nearest pixels, yielding an objective term of the form

(w0,0 ui,j + w1,0 ui+1,j + w0,1 ui,j+1 + w1,1 ui+1,j+1 − v)2.



Figure 9: Tear and crease curves omit straddling C1 smoothness
terms. Creases reintroduce C0 continuity across the curve. Our
method uses generalized derivative kernels (b) rather than axis-
aligned membrane kernels (c) [Terzopoulos 1988]. Red path
vectors in the inset in (b) indicate two possible curves for which this
particular orientation of the triangular Dt̂⊥ kernel is instanced:
the curve must enter the triangle closest to its right-angle vertex.

(a) input (b) axis-aligned kernels (c) generalized kernel

Figure 10: Crease comparison. Axis-aligned kernels (b) cause
unwanted smoothing along this diagonal crease. We overcome this
problem by using a generalized kernel (c).

Critical points constrain the values of the four nearest pixels to all
be equal using four least-squares edge constraints.

Curves are rasterized by computing their intersections with pixel
grid edges and inserting new constraint penalties or adjusting
smoothness penalties there. Such intersections are easily computed
for quadratic B-splines by solving a quadratic equation. We now
describe how each curve type is implemented.

Value curves introduce an affine constraint on the two nearest pixels
at each grid intersection. Tear curves remove Dxx, Dyy, Dxy

smoothness kernels as shown in Figure 9a. When a tear curve is
adjacent to a point or curve value constraint, it also omits from the
value penalty term any pixels on the opposite side of the tear.

Crease curves remove second-derivative smoothness kernels like
tears do, but recover C0 continuity by adding a set of Dt̂⊥

generalized first-difference kernels across the curve, as shown in
Figure 9b. The kernel direction t̂⊥ is given by the normal vector to
the curve obtained at each grid intersection. The inset in (b) shows
how the Dt̂⊥ kernel is formed in a pixel triplet when the curve
passes through either of the two half-edges nearest its corner pixel.

Generalized Dt̂⊥ kernels constrain crease derivatives more
precisely than axis-aligned membrane kernels Dx, Dy as in
[Terzopoulos 1988]. In a diagonal crease curve for example, axis-
aligned kernels transitively constrain distant pixels (e.g., d and e in
Figure 9c). This needlessly removes intended variation along the
crease as shown in Figure 10b.

A slope curve introduces the same set of Dt̂⊥ kernels as the crease
curve, but does not remove the thin-plate smoothness penalties. A
contour curve also involves the same kernel triplets, but assigns
kernel weights based on the tangent rather than normal direction.
As with value curves, tears remove straddling kernels from adjacent
slope or contour curves.

4.2 Compound Features

Compound curves provide more complex behavior from a single
user-specified curve. They define two or more intermediate curves,
identical to or offset from the original one specified and of possibly
different basic types. The offset distance τ can be infinitesimally
small to juxtapose the resulting curves, or some desired thickness
that widens the feature’s effect. Figure 11 shows examples of some
of the types we have found useful. Our notation uses a sequence of
basic-type letters (VTCNS), with a comma between two successive
curves if they are offset by a non-infinitesimal distance. Even for
juxtaposed curves, the ordering may matter; e.g., TV is different
from VT and puts the tear on the left or right side of the feature
curve respectively, as determined by the curve’s direction. Section 6
discusses how various curve types are used in examples.

A crease-value (CV) compound introduces a value curve and a
superimposed crease, both implemented as described previously.
Recall that a crease involves an implicit tear which removes
straddling Dxx, Dxy, Dyy smoothness terms. This implicit tear
also interrupts any straddling kernels from nearby value curves.
The one exception is that it does not affect the CV compound’s
own value curve itself. This yields a symmetric definition; there is
no difference between CV and VC curves.

input no curve T (tear) C (crease)

V (value) N (contour) S (slope) NS

V1TV2 V1S,V2S TV CV

T,V,T C,V,C VS VTV,VTV

V2,V1,V2 CV2,V1,CV2 SV2,CV1,SV2 V1TV1,V2TV2

Figure 11: Examples of compound features, in which a single
vector primitive defines multiple offset curves of various basic types
to realize more complex effects. See also Figure 13.



We note that a two-sided value curve (V1TV2) has similar local
behavior to a diffusion curve [Orzan et al. 2008]. A single-sided
value curve (TV) is similar to that in [Bezerra et al. 2010].

We compute offsets of B-spline curves by offsetting their control
points along the curve normal direction. Our system also supports
mitering and beveling at curve joints and a variety of end caps (flat,
rounded, pointed, and open).

5 Solution Method

The linear systemAu = b is symmetric and banded. Many solution
approaches are possible. For small images, we use a direct solver
that computes the banded-diagonal Cholesky decomposition (CD)
of matrix A. Specifically, we use the dpbtrf() LAPACK function
in the Intel MKL library, which has been optimized to exploit
OpenMP multithreading and SSE vectorization.

For larger images, the direct solver becomes too slow for interactive
use. We invoke it on a coarser grid, and use a coarse-to-fine
hierarchical strategy [Botsch et al. 2005] to upsample and relax the
solution. This same strategy is also needed to compute a solution
on a zoomed-in viewport.

Our solutions are based on 4-channel color vectors u and b.
Displayable values are in the range from 0 to 1. Elements of the
system matrix A are scalars.

Regularization If the set of user-provided features does not
include a sufficient number of value constraints (e.g. at least 3
value constraints for each interior region bounded by a tear curve),
the solution to the thin-plate objective is not unique and matrix
A is only positive semi-definite. Various regularizing functions
can be introduced to obtain a positive-definite system. Following
Equation (1), we add a small weight w1 times the solution
Laplacian ‖∆u‖2, plus an even smaller weight w0 times the
solution magnitude ‖u‖2. Consequently, in each isolated region,
we obtain the exact solution (0, 0, 0, 0) (i.e. transparent color) given
zero constraints, and almost exactly the constant solution given a
single constraint and the linear interpolant given two constraints.
The small regularization weights cause the solution to deviate from
this behavior far away from the constraints.

Coarse-to-fine relaxation Normally we invoke the CD direct
solver on a grid at 128×128 resolution, and use three progressively
finer steps to obtain a 1024×1024 image. To improve response
when the user is actively editing curves, we instead compute the
CD solution on a 64×64 level and upsample in four steps.

Each step upsamples the solution to the next finer level and per-
forms Gauss-Seidel (GS) iterations on the linear system obtained
from rasterizing at that level. GS iteration is terminated when the
RMS change in the solution falls below a threshold of 1e-4, or at
most 30 iterations.

Discontinuity-aware upsampling We biquadratically upsample
in smooth areas using weights
1/16, 3/16, 3/16, 9/16 on
the four nearest parent pixels.
For accurate upsampling near
tears, we determine if the seg-
ment between the finer-level
pixel and each of its four parent pixels intersects any tear curve.
If so, we omit that parent’s contribution in the upsampling.

We also invoke a discontinuity-aware flood fill after upsampling
which propagates defined pixels (α 6= 0) to replace undefined
neighbors (α= 0) if they are not cut off by a tear. This improves

the initialization of regions that were pinched off at coarser levels
of the solution pyramid.

Viewport solution We allow continuous pan and zoom of a
limited viewport and so must account for features lying outside it.
In Orzan et al. [2008], the viewport boundary is assigned Dirichlet
conditions taken from a coarse solution spanning a fixed canvas.
Our goal is to support a virtual canvas of infinite extent. We achieve
this by forming windows of progressively coarser sampling and
larger extent (similar to clipmaps [Tanner et al. 1998]), until all user
features are contained. In addition to initializing it by upsampling,
each window’s solution fixes a two-pixel band around the next-
finer window’s boundary. This essentially defines Cauchy boundary
conditions for the bilaplacian. The coarsest window, and any finer
window still containing all features, applies “natural” boundary
conditions, equivalent to a tear circumscribing the entire boundary.

Scale invariance and objective weighting To obtain consis-
tent solutions across different grid resolutions, the discrete kernel
coefficients for smoothness and constraint terms must scale prop-
erly with resolution. Let hl be the sample spacing at level l, i.e.
hl+1 = hl/2. Then the weight, w2, of thin-plate objective com-
ponents, Dxx, Dxy , and Dyy , are scaled by 1/h2

l to account for
scaling effects due to squared second derivatives and 2D integra-
tion. The Laplacian kernel (based onDx andDy with weightw1) is
scale-invariant since the scaling effects of squared first-derivatives
and 2D integration cancel. The weight for diagonal terms, w0, are
scaled by h2

l . Value constraints along curves, introduced at grid in-
tersections, are scaled by hl; derivative constraints along curves are
scale-invariant. Isolated point constraints are also scale-invariant.

We use raw (before scaling) weights of w2 = 1e-5, w1 = 1.6e-6,
and w0 = 1.4e-7 in all our examples. For features, we use raw
weights wt̂ = 5e-4 for the generalized first-derivative objective at
creases,wt̂ = 2 for derivative constraints at slopes and contours, and
wp = 5e+2 for value constraints (both along curves and at isolated
points). For Laplacian-only solutions in Figures 2(middle) and
3(left), we use weights w2 = 0 and w1 = 1e-3.

Setup and data structures At each resolution level, we first
traverse through feature curves, “rasterizing” each to create two
data structures. One accumulates a list of constraints from all value-
curve grid intersections and isolated value points. The second stores
a discontinuity map of 2 bits per pixel, indicating whether a tear is
present in the x and y edges emanating from that pixel. We also
store the min/max location of all tear curve intersections per edge.

We then traverse the list of value constraints, using discontinuity
information to determine which pixels should be included in each
value kernel. For value curves, we check the discontinuity map
to see whether each intersected edge also intersects some tear. If
so, the min/max tear location for that edge indicates which of its
two pixels to exclude from the affine value constraint. Both pixels
may be cut off, in which case we omit the entire kernel. For value
points, we check whether each segment joining the point to its
four surrounding pixels is intersected by a tear curve. If so, we
eliminate that pixel from the bilinear objective term and reweight
the remaining pixels, as in discontinuity-aware upsampling.

We accumulate values (for vector b) and kernel weights (for
matrix A) in a sparse pixel array called the constraint value map.
From the discontinuity map and constraint value map, we can then
compute a sparse representation of the matrix A. We exploit the
problem’s regular, 2D structure by avoiding indices and simply
storing an n×13 matrix, since at most 13 pixels at known locations
have nonzero coefficients in any row of A.



Fast (ms) Slow (ms)Name Fig. #P #C #CP
setup total setup total

cup 1 1 19 283 13.1 59.5 61.8 263.8
hat 1 4 11 128 13.8 35.2 56.8 208.9
duck 1 4 39 449 14.5 61.0 65.7 287.1
flames 3 9 1 118 14.6 61.0 51.6 246.1
gargoyle 12 3 62 562 12.6 34.0 58.8 225.1
terrain 14 2 8 97 11.0 32.3 52.3 197.7
puppy 16 22 26 513 17.4 38.7 64.9 228.8
girl 16 28 47 658 27.4 61.4 100.8 339.6
French 16 5 53 630 10.4 31.8 61.7 241.6
rose 16 0 57 447 16.9 63.2 70.4 268.5
portrait 16 1 60 541 16.5 54.7 70.0 287.5
fire 16 0 70 1299 20.7 58.7 108.8 389.8
Mark 17 6 62 557 18.0 58.7 81.6 325.2
John 17 5 75 698 16.4 54.7 72.5 311.3
Hugues 17 8 73 662 16.3 54.4 73.5 340.6

Table 1: Statistics for examples. #P = number of isolated point
constraints, #C = number of curves (compounds are counted once),
#CP = number of curve control points.

Performance optimization TPS problems have larger condition
numbers than ones based on Laplacian diffusion. A robust
computation requires double-precision arithmetic to accumulate the
system matrix A and compute the linear system solution with CD.
The vector b may be accumulated in single precision with no effect
on system stability. Computing relatively few iterations of GS in
single precision is robust and allows greater SSE acceleration. For
pixels away from constraints, the GS update is based on the fixed
biharmonic kernel (∆2 in Figure 4), and we optimize this case.

Alternative solutions A different approach would be to create
an adaptive 2D triangulation around discretized feature curves, and
minimize the objective over the resulting irregular mesh. Our
choice to discretize over a regular grid simplifies parallelization
(OpenMP) and vectorization (SSE). Grid rasterization is extremely
fast and avoids having to construct a constrained triangulation at
interactive rates. A regular grid also makes implicit all pixel indices
and neighbor relations, and yields a banded linear system with a
small, fixed number of nonzero off-diagonal entries.

6 Results and Discussion

Examples (Figures 1, 12, 14, 16, and 17) and comparisons
(Figures 2, 3, 5, 7, 8, 10, and 11) were recorded directly from
our prototype system. Interactive sequences are included in an
accompanying video. Example pairs show user input on the left
and solution output on the right. Input images indicate point-
value constraints as colored circles. Basic value curves are drawn
in the solid color of their value, tears in solid black, creases in
dotted black, and contours and slopes with dashed black lines,
oriented along or perpendicular to the curve respectively. Slope-
value, contour-value, and crease-value curves are drawn using
dashed/dotted curves as in the corresponding basic type but in the
value color rather than black. Other compound curves are drawn
using their constituent offset curves. These offsets are all derived
from a single user-drawn curve as discussed in Section 4.2.

As the examples demonstrate, our system provides rich but
controllable results from a compact user specification. The number
of isolated points (#P), curves (#C), and curve control points (#CP)
for each example are documented in Table 1 and serve as a rough
measure of input complexity.

Our benchmark machine is a dual quad-core Intel Xeon (E5640,
2.67GHz). Images and video were generated using four multireso-

Figure 12: Example with compositing for the drop shadow. The
checkerboard indicates a transparent region, with color (0,0,0,0).

Set of (SV2, CV1, SV2) compound curves used to create indentations.

Single (CV2, V1, CV2) compound curve used to form a highlight.

Figure 13: Example close-ups demonstrating some practical uses
of compound curves (from the toes of the “gargoyle” in Figure 12
and the head of the “duck” in Figure 1).

lution steps using a base-level CD solution of resolution 128×128.
Final image resolution was 1024×1024.

The system achieves interactive performance as shown in Table 1.2

The table reports total time as well as separately breaking out time
for setup (curve rasterization, computation of discontinuity and
constraint value maps, and assembly of the system matrix). The
time difference is spent on solution relaxation (CD/GS as well as
coarse-to-fine upsampling). As discussed in Section 5, our system
uses two solution modes: a faster one used for interactions like
control point dragging and image panning (based on a 64×64 base-
level grid), and a slower one invoked after UI button-release (based
on a 128×128 base-level grid). Performance for both modes is
reported in the table.

The “gargoyle” example in Figure 12 separates the shadow into its
own image layer. Ignoring the shadow caster lets us define the
shadow using just a few closed slope-value curves. Because the
gargoyle object layer is bounded by a tear and there are no external
constraints, the solution automatically becomes transparent outside
the tear boundary.

2One source of timing variance in the examples is whether its features
are completely contained inside the viewport. As explained in Section 5,
features that lie outside the viewport require additional coarser-level CD
iterations to initialize boundary conditions. Examples needing these
additional CD passes were: cup:3, hat:1, duck:3, flames:3, girl:2, and rose:3.



Figure 14: Terrain authoring example. The height field is smooth
except at specified value-tear-value (VTV) and tear (T) curves. The
slope-value (SV) and slope (S) curves precisely control the smooth
ridge line and valley respectively.

The “hat” example in Figure 1 uses offset, two-value compound
curves (V1,V2). Three of these suffice to control shading in the
main (orange/brown) region. For the video, we created another
version using the same outlines, but based on point and derivative
constraints with no value curves. Two contour curves specify
shading above and below the green band, and one crease curve
forms the crown’s crease.

In Figure 16, the “puppy” uses value points but no value curves.
Shading is controlled using contour curves, especially noticeable in
the dog’s face and right side of his body. The “girl” uses pairs of
VS (value slope) curves to obtain color variation in the hair. The
“French” example attempts an ethereal effect using basic crease
curves without any hard outlines. Note that such naked creases
(without values) are a new contribution of our work. Color is
specified sparsely with just four V1,N,V2 compound curves (value,
contour, value) and five value points. The “rose” uses tear-value,
crease-value, and slope-value compound curves. Note that a crease-
value is similar to a diffusion curve and gives the user the option of
removing smoothness over a value curve if desired. The “portrait”
example produces subtle shading in the cheeks and nose primarily
using slope-value curves. Finally, the “fire” example attempts to
reproduce Figure 11(left) in [Bezerra et al. 2010]. Our result is
produced from a single PDE solution rather than two successive
diffusion computations.

A more realistic look is targeted in the “cup”, “duck”, and
“gargoyle” examples which are also based mainly on value and
slope-value curves. The “duck” adds contour curves to control
shading. Both the “duck” and “gargoyle” use additional compound
curves to introduce highlights or shadows, as shown in Figure 13.
Note the smoothness of shading in these examples, especially at
value curves such as across the body of the cup in Figure 1.

The terrain example in Figure 14 is rendered as height-field
geometry rather than an image. It uses tears, contours, slopes,
and a critical-point mountain peak. A flat lake is bounded by a
closed VTV compound, which behaves much like a crease-value
(CV) curve. A slope-value curve in the bottom-right hill forms a
ridge line while a contour guides the upper left hill’s cross-section.
A value curve is also used to shape this hill without introducing an
unwanted crease.

Numerical accuracy We tested the accuracy of our coarse-to-
fine solution approach by varying the resolution level at which we
invoked the initial low-resolution CD solver. Results are shown in
Figure 15. The reference solution applied CD directly at the final
resolution of 512×512 without coarse-to-fine relaxation.

reference 32×32 64×64 128×128

0.104, 0.775 0.027, 0.205 0.012, 0.090

Figure 15: Numerical accuracy obtained when starting the
hierarchical solution at different resolutions. Error numbers are
RMS and maximum differences over all pixels, relative to the
reference solution.

We also decreased the termination threshold for GS iteration (used
for relaxation at finer resolution levels) from 10−4 to 10−5 and
10−6, and removed the limit on iterations, holding all other
parameters constant. This yielded negligible improvement in the
resulting images and quantitative error numbers. Applying a few
iterations of GS rapidly relaxes the upsampled estimate whereas
further iteration converges too slowly to be worthwhile in an
interactive system.

Limitations A single coarse-to-fine pass provides sufficient ac-
curacy in most situations. Topology changes due to rasterization
at a low-resolution base level occasionally hamper convergence at
finer levels. A particularly bad case is two large regions linked by
a narrow neck, e.g. a dumbbell. Overly coarse rasterization that
pinches off this neck will incorrectly isolate the two ends. This is a
limitation on our current solver, not the overall TPS framework.

Unlike the Laplacian solution, the thin-plate spline does not possess
the maximum property and instead extrapolates beyond specified
value constraints. This is often natural and convenient, as shown in
Figure 3, but can also overshoot to produce out-of-range colors. We
simply clamp these back to the displayable range. Such problems
are most evident with closely-spaced value point pairs or nearly
collinear triples which can create large derivatives. Similar issues
arise in surface modeling with interpolated control points; they are
easily corrected by adjusting their location. The spatial extent of
extrapolation can also be controlled with simple tears, additional
value curves, or curves that induce zero derivatives such as creases,
slopes, and contours. We did not find extrapolation to be a practical
difficulty in our examples.

7 Summary and Future Work

We propose a new image synthesis method that minimizes a least-
squares objective on pixel values, combining thin-plate smoothness,
explicit discontinuity control, and constraints on values and deriva-
tives. Compared to previous work in variational vector graphics,
our higher-order notion of smoothness produces a more natural,
fuller-looking result and supports more powerful and intuitive edit-
ing controls. Our method inputs a unified network of points and
curves which interact in just one PDE solution, without additional
relaxation or blurring passes.

Our implementation can easily be generalized to handle other types
of curve geometry, offset types, and nonzero derivative constraints.
Computing on the GPU may accelerate our system. Antialiasing,
especially at tears, is a simple extension that can be computed from
our discontinuity map. Solutions can also be computed in spaces
other than (r, g, b) color per pixel, with possible application to
domains such as the authoring of control fields for texture synthesis,
programmable shading, and procedural modeling.



Figure 16: More examples using a variety of graphic styles.

Figure 17: The authors.

Several avenues remain for longer-term future work. We have not
yet applied our method to automatic vectorization of given images
as in [Orzan et al. 2008; Jeschke et al. 2011]. Many techniques
accelerate the solution of Laplacian systems and might be benefi-
cially applied to our more general objective formulation, including
locally-adapted hierarchical basis preconditioning [Szeliski 2006]
and adaptive discretization [Agarwala 2007]. A hard-constraint
solver could be substituted for our unconstrained minimization
to enforce constraints exactly. It may be possible to extend the
smoothness objectives to account for subpixel curve positioning,
so that the solution changes continuously as features move over the
pixel grid. Our smoothness objective and constraints could be ex-

tended to even higher-order derivatives, perhaps based on curvature
[Moreton and Sequin 1992; Botsch and Kobbelt 2004]. Finally, our
approach could be extended to 3D volumes [Takayama et al. 2010].

Acknowledgments

We manually traced curves over public-domain art in http://www.

openclipart.org/tags/line_art for the “hat”, “puppy”, “girl”,
“French”, and “rose” examples. We thank Andrea Finch for
capturing source photos that inspired other examples, and Eric
Stollnitz for implementation pointers.

http://www.openclipart.org/tags/line_art
http://www.openclipart.org/tags/line_art


References
AGARWALA, A. 2007. Efficient gradient-domain compositing

using quadtrees. ACM Trans. Graphics, 26(3).

BERTALMIO, M., SAPIRO, G., CASELLES, V., and BALLESTER,
C. 2000. Image inpainting. ACM SIGGRAPH Proceedings.

BEZERRA, H., EISEMANN, E., DECARLO, D., and THOLLOT, J.
2010. Diffusion constraints for vector graphics. In Proceedings
of NPAR.

BOOKSTEIN, F. 1989. Principal warps: Thin-plate splines and the
decomposition of deformations. IEEE Trans. on Pattern Anal.
Mach. Intell., 11(6).

BOTSCH, M., BOMMES, D., and KOBBELT, L. 2005. Efficient
linear system solvers for mesh processing. In Mathematics
of Surfaces XI, volume 3604 of LNCS, pages 62–83. Springer
Verlag.

BOTSCH, M. and KOBBELT, L. 2004. An intuitive framework for
real-time freeform modeling. ACM Trans. Graphics, 23(3).

BOTSCH, M. and SORKINE, O. 2008. On linear variational
surface deformation methods. IEEE Trans. on Visualization and
Computer Graphics, 14(1).

COURANT, R. and HILBERT, D. 1953. Methods of Mathematical
Physics, Vol I. London: Interscience.

DUCHON, J. 1977. Splines minimizing roation-invariant semi-
norms in Sobolev spaces. In W. Schempp and K. Zeller, editors,
Constructive Theory of Functions of Several Variables, pages
85–100. Springer.

FISHER, M., SCHRÖDER, P., DESBRUN, M., and HOPPE, H.
2007. Design of tangent vector fields. ACM Trans. Graphics,
26(3).

GEORGIEV, T. 2004. Photoshop Healing Brush: a tool for seamless
cloning. In Proc. of ECCV.

HNAIDI, H., GUÉRIN, E., AKKOUCHE, S., PEYTAVIE, A.,
and GALIN, E. 2010. Feature based terrain generation using
diffusion equation. Computer Graphics Forum, 29(7).

JACOBSON, A., TOSUN, E., SORKINE, O., and ZORIN, D.
2010. Mixed finite elements for variational surface modeling.
Computer Graphics Forum, 29(5):1565–1574.

JESCHKE, S., CLINE, D., and WONKA, P. 2009. Rendering
surface details with diffusion curves. ACM Trans. Graphics, 28
(5).

JESCHKE, S., CLINE, D., and WONKA, P. 2011. Estimating color
and texture parameters for vector graphics. Computer Graphics
Forum, 30(2):523–532.

JOHNSTON, S. 2002. Lumo: Illumination for cel animation. In
Proceedings of NPAR.

JOSHI, P. and CARR, N. 2008. Repoussé: Automatic inflation of
2D art. In Eurographics Workshop on Sketch-based Modeling.

MORETON, H. and SEQUIN, C. 1992. Functional optimization for
fair surface design. ACM SIGGRAPH Proceedings.

ORZAN, A., BOUSSEAU, A., WINNEMÖLLER, H., BARLA, P.,
THOLLOT, J., and SALESIN, D. 2008. Diffusion curves: a
vector representation for smooth-shaded images. ACM Trans.
Graphics, 27(3).

PÉREZ, P., GANGNET, M., and BLAKE, A. 2003. Poisson image
editing. ACM Trans. on Graphics, 22(3).

SORKINE, O. and COHEN-OR, D. 2004. Least-squares meshes. In
Proc. of Shape Modeling International.

SUN, J., LIANG, L., WEN, F., and SHUM, H.-Y. 2007. Image
vectorization using optimized gradient meshes. ACM Trans.
Graphics, 26(3).

SZELISKI, R. 2006. Locally adapted hierarchical basis precondi-
tioning. ACM Trans. Graphics, 25(3).

TAKAYAMA, K., SORKINE, O., NEALEN, A., and IGARASHI, T.
2010. Volumetric modeling with diffusion surfaces. ACM Trans.
Graphics, 29(6).

TANNER, C., MIGDAL, C., and JONES, M. 1998. The clipmap: a
virtual mipmap. ACM SIGGRAPH Proceedings.

TERZOPOULOS, D. 1983. Multilevel computational processes for
visual surface reconstruction. Computer Vision, Graphics, and
Image Processing, 24(1).

TERZOPOULOS, D. 1988. The computation of visible-surface
representations. IEEE Trans. Pattern Anal. Mach. Intell., 10(4).

WAHBA, G. 1990. Spline Models for Observational Data,
volume 59 of CBMS-NSF Regional Conference Series in Applied
Mathematics. SIAM, Philadelphia.

WELCH, W. and WITKIN, A. 1992. Variational surface modeling.
ACM SIGGRAPH Proceedings.


