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Figure 1: Bunny rendered using color volume texture; globe rendered using threshold textures (modulated per-pixel).

Abstract 

Recent advances in NPR have enabled real-time rendering of 3D 
models shaded with hatching strokes for use in interactive 
applications.  The key challenges in real-time hatching are to 
convey tone by dynamically adjusting stroke density, while 
controlling stroke size and maintaining frame-to-frame coherence.  
In this paper, we introduce two new real-time hatching schemes 
that leverage recent advances in texture mapping hardware.  Both 
schemes provide enhanced control of tone, thereby avoiding 
blending or aliasing artifacts present in previous systems.  The 
first scheme, which relies on volume rendering hardware, admits 
the use of color.  The second scheme, which uses pixel shaders, 
allows per-pixel lighting operations such as texture modulation.  
Both schemes run at interactive rates on inexpensive PC graphics 
cards. 
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1. Introduction 

A variety of non-photorealistic rendering styles use hatching 
strokes to convey tone (through stroke density), suggest material 
(through stroke arrangement), and reveal shape (through stroke 
orientation).  Interactivity presents a number of challenges for 
applications using non-photorealistic rendering: (1) limited run-

time computation, (2) frame-to-frame coherence among strokes, 
(3) control of stroke size and density under dynamic viewing 
conditions.  Two recent algorithms have leveraged advances in 
hardware texturing capabilities to enable the use of hatching 
strokes in interactive applications [Freudenberg 2001; Praun et al. 
2001].  However, to achieve fine tone control, these systems have 
suffered from a tradeoff between temporal aliasing and blending 
artifacts. 

In this paper we present two new real-time hatching schemes that 
extend our previous work on tonal art maps (TAMs) [Praun et al. 
2001]. By providing greater control over the introduction and 
removal of strokes in the image plane, both schemes offer finer 
control over tone. In addition, each new scheme exploits features 
of modern texture mapping hardware to enable stroke-based 
rendering effects that were unavailable with previous methods 
(Figure 1): 
•  The first scheme exploits volume texturing hardware to permit 

finer tone control, as well as use of color hatching strokes. 

•  The second scheme extends the texture thresholding method of 
Freudenberg [2001], by using multiple thresholds to reduce 
aliasing artifacts while permitting per-pixel lighting 
operations. 

The remainder of this paper is organized as follows. Section 2 
offers a brief survey of related work. Section 3 describes in detail 
the implementation of the two new schemes, and offers some 
comparisons. Section 4 describes a new method for creating 
TAMs with color as well as more tonal and character variation 
than in our previous method. Finally, Section 5 presents results 
and Section 6 concludes with areas of future work. 

 



 

2. Related work 

There have been a number of systems that use hatching for NPR. 
 
Off-line hatching.  Several systems address the problem of 
generating high-quality hatching for static scenes in an off-line 
process.  Saito and Takahashi [1990] describe a method for post-
processing the framebuffer to overlay image-space strokes.  
Winkenbach and Salesin [1994], and Salisbury et al. [1997] 
introduce prioritized stroke textures, which map tone values to 
arrangements of strokes, and present impressive examples of 
computer-generated hatching.  Sousa and Buchanan [1999; 1999] 
concentrate on the technical aspects of physically simulating real 
media such as pencil, crayon, blenders, and erasers.  Hertzmann 
and Zorin [2000] create high-quality silhouettes, and describe an 
image-space stroke placement scheme for cross-hatching. 
 
Real-time hatching.  Durand et al. [2001] create hatched images 
from photographs in real-time using hardware acceleration to 
perform anti-aliased thresholding. A few recent systems have 
addressed real-time hatching of 3D models.  Markosian et al. 
[1997] introduce a simple hatching style indicative of a light 
source near the camera, by scattering a few strokes on the surface 
near (and parallel to) silhouettes.  Elber [1999] shows how to 
render line art for parametric surfaces in real time; he renders 
objects by choosing a fixed density of strokes on the surface.  
Lake et al. [2000] describe an interactive hatching system with 
stroke coherence in image space (rather than in object space).  
Freudenberg’s approach [2001] consists of coding a stroke texture 
as a halftone pattern.  To shade a pixel, the “height” of the 
corresponding location in the pattern is compared to the pixel’s 
target tone, using a “soft” threshold function (a clamped linear 
function with high slope, instead of a step function).  This 
approach inspired our own thresholding scheme in Section 3.2, 
which encodes multiple thresholds per texel for anti-aliasing.  
 
Real-time hatching with TAMs.  In previous work [Praun et al. 

2001], we described how prioritized stroke textures could be 
rendered efficiently using texture hardware by precomputing a 
tonal art map (TAM).  The images in a TAM capture hatching at 
various tones and scales.  For visual continuity in an interactive 
system, we used multitexturing to blend the TAM images over 
each triangle.  Due to hardware limitations, our system could 
support TAMs with only 6 different tone textures, and these 
textures were constrained to be grayscale.  In this paper we 
propose two new rendering schemes that are able to utilize TAMs 
with finer resolution in the tone dimension, and one of the 
schemes naturally supports colored hatching. 

3. New rendering schemes 

We now present our two new rendering schemes, and compare 
their benefits and drawbacks. 

3.1 Volume texture scheme 

Recent graphics cards support volume textures, whereby a third 
texture coordinate r is added to the traditional (s,t) to perform 
lookup within a 3D texture space.  Our first rendering scheme 
uses this third dimension r to encode tone.  At load time, TAM 
images are simply stacked up along the tone axis of the texture 
volume. 

On polygons with large tone variation, our previous scheme 
would only do linear blending between the 2D textures 
corresponding to the extreme tone values to be represented, 
producing many gray strokes.  The volume texture method, 
however, more effectively reproduces all the intermediate tones, 
since the 3D texture lookup can access all tone levels of a dense 
TAM.  If the set of TAM images is sufficiently dense, the 
resulting rendering will give the illusion that strokes are added 
independently, rather than added in blended groups as in [Praun et 
al. 2001].  For this versatility however, we pay the price of larger 
texture memory consumption. 

Figure 2. Left: tonal art map (TAM) pyramid. Right: example textures used on Figure 1 bunny (tones and scales indicated at left).



 

Another advantage of volume texturing is the support of color.  
Both our original scheme [Praun et al. 2001] and our texture 
threshold scheme (Section 3.2) maximize the number of reference 
tone images by packing them into the R,G,B,A channels of 2D 
textures.  This packing limits the one-pass version of the schemes 
to grayscale strokes, requiring multi-pass implementations to 
render color. 

Since we are using volume textures in a non-standard way, we 
need to take into account several aspects related to mipmapping.  
For our application, the ideal filtering behavior would treat the 
spatial dimensions separately from the tone dimension, i.e. 
maintain full tonal resolution even as spatial resolution decreases.  
Unfortunately, current hardware does not offer this behavior.  
(Disabling filtering altogether is not acceptable since it leads to 
aliasing.)  There are two effects of letting the mipmapping in the 
tone dimension be influenced by spatial resolution: at coarse 
mipmap levels we lose both tone resolution and tone range. 

The loss of tone resolution is not necessarily detrimental, as 
long as we start with enough resolution at the finest level.  As the 
object takes up less screen space, it is harder to notice tone 
variation, so reducing the tone resolution is quite natural.  In our 
examples, we used a 256×256×64 volume.  The coarsest spatial 
level that we generate in our TAM is 32×32 (as strokes are not 
discernible in coarser levels), corresponding to a resolution of 8 in 
the tone dimension. 

The loss of tone range is caused by the relationship between 
texture coordinates and texture samples: the first and last samples 
in a dimension do not correspond to coordinates 0 and 1 
respectively, but to 1/2ℓ+1 and 1 – 1/2ℓ+1, for a mipmap level of 
resolution 2ℓ.  For coordinates 0 and 1, texturing returns a 50% 
interpolation between the first (and respectively, last) sample and 
the border.  Therefore, the range of tones that we can represent 
without border interpolation is different for each mipmap level.  
Using a texture with border compresses the overall range of tones 
available to us, and forces software rendering in our graphics 
driver.  Instead, we perform a border interpolation correction 
using register combiners.  This interpolation uses 100% border 
contribution for the texture coordinates extremes (0 and 1), rather 
than the default 50%. 

When filling up the volume we need to follow the standard 
mipmapping sampling pattern.  Consider the example where we 
want 64 levels at the finest resolution.  We generate a TAM as 
in [Praun et al. 2001] with 128 columns.  The finest level planes 
are assigned the 256×256 images with tones 1/128, 3/128, 5/128, 
… 127/128.  The next resolution level are assigned the 128×128 
images with tones 2/128=1/64, 3/64, 5/64, …63/64, and so on.  
Thus, each tone level appears in exactly one mipmap level. 

3.2 Texture threshold scheme 

Our second rendering scheme extends the method presented by 
Freudenberg [2001] to produce better anti-aliasing.  His method 
uses a halftoning approach: it stores a texture containing, for each 
texel, the threshold tone at which a screen pixel should change 
from white to black.  To provide some antialiasing, the method 
uses a “soft” threshold function (clamp(1-4(1-(I+T))) for an input 
intensity I and a threshold value T).  This soft threshold function 
works well when the change in tone is achieved by varying the 
width of the stroke.  However, when modulating tone by adding 
or removing strokes, aliasing artifacts become visible, particularly 
with thin or overlapping strokes, and in animations.  In [Praun et 
al. 2001], we experimented with thresholding the framebuffer to 
generate a traditional pen-and-ink style, but encountered similar 
aliasing artifacts. 

When drawing correctly antialiased strokes, most of the stroke 
pixels should be black, but the few pixels at the stroke boundary 
that receive only partial coverage should be drawn in gray.  (Only 
when a subsequent hatching stroke covers these pixels might they 
change to full black.)  To capture this behavior, we propose to 
represent for each texel a piecewise constant function that maps 
input tones into gray values for the texel.  This function therefore 
has several transitions, rather than a single transition as in 
conventional halftoning. (See Figure 3.)  To render a surface, for 
each screen pixel we compare its tone (obtained from Gouraud 
interpolation) with each of the transition X values (obtained from 
texture lookup).  We then take the sum of the heights of all the 
transitions that pass their comparison tests: 1 
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This scheme introduces strokes one by one, much like the 
volumetric method.  In fact, one can view these mapping 
functions as run-length encodings of rows of texels parallel to the 
tone dimension in the volume texture from the previous section.  
The volume texture is rather coherent: a texel keeps its shade for 
large tone intervals, between the events when different strokes 
touch the same texel.  Since one goal of TAM generation is spatial 
uniformity, such events are placed as far apart as possible in the 
tone dimension, leading to large spans of constant values in the 
volume. 

 

 
Figure 3: Transition diagram for a single texel. 
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This function can be implemented on a GeForce3 using register 
combiners.  Simultaneous thresholding of several values can be done by 
multiplying the 8-bit fixed point colors with 256 (by chaining 
scale_by_four()’s); while sum of products can be implemented efficiently 
using dot products.  The double inversion (1- intensity; 1-sum) is needed 
because frame buffers represent “amount of white” while we want to be 
adding “blackness” (corresponding to black strokes on white paper).  
Without the inversions, our highlights (light regions on the models) will 
appear drawn with many overlapping white strokes on a dark canvas, 
rather than as a white canvas with no strokes. 



 

Since the value of I does not influence which xi and ∆yi texture 
locations to address, I can in fact be a more complicated function.  
For instance, we can modulate I per-pixel with a texture, to 
produce effects such as the hatched earth globe shown in Figure 1, 
without affecting the triangulation of the model (as would be 
necessary in a scheme that could only compute I at vertices). 

One problem to consider when representing such transfer 
functions using textures is (tri-)linear interpolation.  If two 
neighboring texels have the same set of xi’s, interpolating the 
corresponding ∆yi’s  yields the correct result.  Unfortunately, this 
doesn’t hold for interpolating xi values.  To reduce artifacts, we 
try to only interpolate between close xi values: we divide the 
intensity interval into several bins (not necessarily of equal 
length), and for each texel only allow a single transition in each 
bin.  Consequently, when different xi’s from adjacent texels are 
blended together, they can differ only by at most the bin width.  In 
our implementation we used 7 bins corresponding to at most 7 
transitions, which we packed in the RGBA channels of 4 textures 
(we reserve 4×4 - 7×2 = 2 channels for the modulate mask and the 
splotch mask for a lapped parameterization [Praun et al. 2000]).   

Since strokes are placed uniformly across the TAM textures, it 
is infrequent that a texel undergoes more than one transition in the 
same bin.  When that happens, we store ∆y to be the sum of the 
transition heights, and randomly pick xi from among those in the 
bin.  Since more strokes are placed at the dark end of a TAM, we 
make the bins smaller at the dark end of the spectrum than at the 
light end.  While this binning scheme tends to work well under the 
assumptions stated, it can lead to banding artifacts when these 
don’t hold.  When the TAM is made of many small, thin strokes, 
the average number of strokes touching a texel increases, and 
therefore, the number of transitions increases as well.  In the limit, 
when trying to represent a continuous mapping function (no 
strokes — just 256 gray levels), forcing a representation using 
only 7 discrete transitions, spaced according to our bin 
distribution, produces models shaded with only 7 levels of gray, 
appearing in 7 bands.  Choosing xi’s at random within each texel’s 
bins helps make the band boundaries more rough than choosing 
the mean or average. 

3.3 Comparison of the two methods 

Both methods presented in this paper offer an improvement over 
our previous scheme [Praun et al. 2001], by allowing finer control 
over tone reproduction.  Since we have many more TAM columns 
(samples in the tone dimension), and since each pixel, rather than 
each vertex, determines the samples to be blended, we can give 
the illusion of adding (or growing) each stroke individually, in 
addition to fading in large waves of strokes, as was previously 
possible. Preference for one effect over another is an aesthetic 
decision we can now offer the designer. 

Figure 4 shows a comparison of the three methods, using 
different representations of the same 255-column TAM.  Our 
previous method (Figure 4a) has large areas of gray strokes.  In 
the volume rendering approach (Figure 4b) there are a few gray 
strokes caused by tri-linear interpolation (due primarily to 
mipmapping rather than tone interpolation).  The threshold 
scheme (Figure 4c) has no gray strokes, only gray pixels around 
strokes for anti-aliasing.  This is due to the fact that interpolation 
happens on the thresholds, before being compared to the tone.  An 
artifact of this is the presence of a few thin strokes that don’t get 
anti-aliased, since their boundary pixels do not pass the test using 
the interpolated thresholds.  

While the threshold scheme uses less memory, it is actually 
slightly slower to render than the volume approach, since it 

involves accessing more textures per pixel.  However, it gives us 
the opportunity for interesting per-pixel effects, such as 
modulating tone using a different texture.  With fewer threshold 
bins or additional texture accesses on future hardware, one could 
integrate more complicated effects such as bump mapping and 
Phong shading.  Using these effects with the volume texture 
rendering approach may be possible in the near future, on 
graphics cards that allow more complicated dependent texture 
accesses.  Another feature that is likely to be available soon is 
anisotropic filtering of volume textures; its absence causes the 
slightly blurrier regions near the silhouettes in Figure 4b. 

 

 
One of the advantages of the volume rendering approach is the 

ease of integrating color.  This opportunity raises an interesting 
artistic question: what can we convey with color that we cannot 
convey with tone alone?  While we do not offer a substantial 
answer to this question, we have experimented with choosing a 
path through the color cube, parameterized by luminosity (tone).  
We have chosen the hues for the colors along this path from 
compatible color palettes. 

4. Fine-level TAM generation 

Both rendering schemes require the construction of a TAM that is 
much denser along the tone axis than in [Praun et al. 2001] (as 
many as 255 tones2 instead of 6 tones).  This can be constructed 
using the algorithm described in our previous paper.  Obtaining 
more tone levels does not require any more pre-processing time, 
since the same number of candidate strokes are still added; we 
simply “snapshot” more TAM images during the process. 

In the remainder of this section, we present an alternative 
method for TAM generation that allows the user more control and 
more expressive power.  We generate the finest levels of the TAM 
using a high-quality drawing package, by placing strokes in an 
image to achieve gradually darker tones.  An automated process 
then replays the sequence of strokes, and selects images 
corresponding to the tones we want to represent at the finest TAM 
level.  From this, we then construct the coarser levels of the TAM.  
This scheme works particularly well as it leverages the strengths 
of the artist and computer to compensate for the other’s weakness.  
The artist need not be overly concerned with the mechanics of 
TAM generation; he or she simply works on a single texture, 
drawing a sequence of strokes until satisfied with the range of 
tones.  The computer then handles the task of selecting subsets of 
strokes to form each image in the volumetric TAM (a task that is 
prohibitively tedious for a user to undertake).  

                                                                 
2 The number 255 is due to the precision currently available in commodity 
graphics hardware.  
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Figure 4: Comparison of rendering schemes. 



 

  

  

  
Figure 5: Results.  Top two rows: volume texture rendering.  Bottom row: thresholds rendering. 



 

In order to maintain coherence and tone at each level of the 
mipmap volume, it is important to select correlated sets of strokes. 
The image at a given level and tone (ℓ, t) should consist of the set 
of strokes in the next lightest tone at the same resolution (ℓ, t-1) 
plus some subset of the strokes used in the same tone at the next 
highest resolution (ℓ+1, t).  Since the resolution decreased for the 
new level, the strokes are relatively larger, so fewer of them will 
be needed for the same coverage, or tone difference.  For 
grayscale TAMs, we can simply select a prefix of the stroke 
sequence.  However, for color TAMs representing a path 
parameterized by tone through the color space, taking the prefix 
that produces the desired tone difference will very likely give us 
the wrong hue.  In this case, we first decimate the stroke sequence 
(throw out a constant fraction of randomly selected strokes), and 
then take the prefix.  In theory, one could do a binary search to 
find the right fraction for each TAM or even for each image (this 
fraction depends on stroke properties such as aspect ratio), in 
practice though we have found that choosing a constant fraction 
works well, given that we are sampling small tone steps. 

5. Results 

Figure 5 shows several stills produced with our system.  The 
accompanying video shows short animations of these models. 

The hand image is drawn using a style reminiscent of chalk and 
charcoal.  Following artistic conventions, the highlight strokes are 
hatched in a single direction whereas the shading also employs 
crosshatched strokes.  The fruit bowl image uses an ink texture in 
which overlapping strokes combine to increase darkness.  This 
differs from the hand image in which overlapping strokes do not 
darken the surface.  The color stipple pattern used on the gargoyle 
model was an interesting artistic experiment, since it produced the 
widest range of reactions from the people we have shown it to.  It 
lessens the illusion of a growing front of strokes, since the length 
of the stroke is short enough that new strokes are distinct from 
existing strokes.  Finally, for the rocker arm, we tried to achieve a 
look evocative of mechanical sketch. 

The bottom row of Figure 5 shows two examples of objects 
rendered using threshold textures.  When these objects rotate, the 
strokes give the appearance of growing into the highlight regions.  
The crisp black and white aspect of the strokes is reminiscent of a 
hand drawn pen-and-ink style. 

The Earth image in Figure 1 shows the integration of threshold 
textures and per-pixel modulation with a map texture.  The bunny 
of Figure 1 is drawn using short arcs with random orientations.  
When animated, these strokes provide a different impression from 
the other models: since they grow in different directions, there is 
no illusion of an advancing front of strokes.   

All these models render at around 30-40 frames per second on 
our GeForce3 card.  This includes time spent extracting the 
silhouettes and drawing the background.  The original models 
have between 7,500 and 15,000 faces.  For all models except the 
Earth globe and the fruit bowl, we created a lapped texture 
parametrization.  The objects in the fruit bowl were created using 
spline patches, and we used their intrinsic u,v parametrization. 

The 6-column TAM used in [Praun et al. 2001] required 
800KB of texture memory.  By comparison, the volume texture 
requires 15MB (or 20MB when keeping alpha for border 
correction), and the threshold textures take up 1.8MB. 

6. Conclusions and future work 

We have presented two methods to improve the quality of 
interactive hatch renderings.  Both methods provide fine tone 

control.  Volumetric textures allow for greater user expression by 
adding the ability to render color hatchings.  Threshold textures 
store a discrete set of tone transitions per texel, supporting hatch 
rendering with fine tone control and anisotropic filtering with far 
less memory consumption.  This is at the cost of restricting the 
hatched models to grayscale images.     

We have found that harsh polygonal silhouettes are often the 
largest factor in associating the rendering with a 3D model.  We 
would like to investigate methods draw smooth stroke-based 
silhouettes that complement the volumes textures.  

The current implementation of volume TAMs utilizes a large 
amount of texture memory.  Since volume TAMs have an 
extremely high degree of coherence by definition, it may be 
possible to greatly reduce the amount of memory consumption.   

We would also like to investigate methods that provide a 
provable error bound on tone and hue among the different 
mipmap levels.   

Furthermore, we are interested in rendering entire scenes 
instead of single objects.  This introduces new opportunities to 
explore other artistic techniques as haloing and shadowing. 
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       Color Plate for “Fine Tone Control in Hardware Hatching”.  Top row:  Figure 1 and four sample textures from the corresponding 

 volume texture (a,b,c highest detail,  d  lower detail).  Middle and bottom rows:  volume texture renderings from Figure 5. 
 


