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We convert a sequence of unstructured textured meshes into a mesh with
incrementally changing connectivity and atlas parameterization. Like prior
work on surface tracking, we seek temporally coherent mesh connectivity to
enable efficient representation of surface geometry and texture. Like recent
work on evolving meshes, we pursue local remeshing to permit tracking over
long sequences containing significant deformations or topological changes.
Our main contribution is to show that both goals are realizable within
a common framework that simultaneously evolves both the set of mesh
triangles and the parametric map. Sparsifying the remeshing operations
allows the formation of large spatiotemporal texture charts. These charts are
packed as prisms into a 3D atlas for a texture video. Reducing tracking drift
using mesh-based optical flow helps improve compression of the resulting
video stream.
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1 INTRODUCTION
Several techniques capture a performance for interactive viewing
within a virtual environment [e.g., Collet et al. 2015; Dou et al. 2016;
Newcombe et al. 2015; Starck and Hilton 2007; Zitnick et al. 2004].
This quickly advancing area is variously referred to as volumetric
video, VR holograms, or free-viewpoint video. One commonly used
representation is a temporal sequence of colored meshes. Each mesh
consists of a set of triangles with shared vertex positions. Surface
color is specified using per-vertex attributes, projected camera
images, or a parameterized texture atlas image.
The most flexible approach is to store an independent mesh for

each time frame, as this supports arbitrarily varying scenes with
topological changes and large deformations. Creating an unstruc-
tured sequence of meshes is natural for many surface reconstruction
techniques. However, the flexibility comes with significant runtime
cost. Each mesh must be encoded separately due to its unique con-
nectivity. The set of vertices and/or texture parameterization also
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Fig. 1. Four frames of the “clothing” sequence and their 2D texture slices
within the 3D atlas parameterization. Hue and saturation visualize the
midpoint and length of each chart’s lifespan, from red (early) to blue (late),
with saturated colors for short lifespans.

changes each frame, so one cannot easily exploit temporal coher-
ence of surface appearance. In short, unstructured meshes lead to
high data bandwidth and memory use.

Instead, many approaches perform inter-frame tracking, whereby
the mesh deforms geometrically but retains the same connectivity
(and parameterization) over consecutive frames. Often, mesh
tracking is successively applied over dozens of frames, until some
triangles become overly deformed or topological changes occur.
Collet et al. [2015] explore finding an optimal subset of keyframes at
which to reinitialize the mesh connectivity. Within each keyframe
subsequence, the shared mesh connectivity facilitates geometry
compression [Yu et al. 2011] and the shared parameterization lets
texture images be encoded efficiently as a video stream.

Bojsen-Hansen et al. [2012] make the important observation that
mesh tracking failures are often spatially localized. Their approach is
to identify erroneous regions and apply local remeshing, thereby cre-
ating evolving meshes. They also establish surface correspondences
across remeshing operations to propagate attributes like surface
albedo over mesh vertices during animation. However, their scheme
does not support a temporally coherent surface parameterization.

Our main contribution is to enable local remeshing in conjunction
with a texture atlas parameterization (Figure 1). Use of a texture
provides efficient storage of high-resolution surface detail and
allows inter-frame compression using hardware-accelerated video
coding schemes like MPEG-4. The key challenge relative to [Bojsen-
Hansen et al. 2012] is to spatiotemporally sparsify the remesh
operations to allow the creation of large texture charts that persist
across many frames. Naturally, the approach performs best when
remeshing is minimized. To this end, we present techniques to both
improve mesh tracking and reduce the remeshing extent.
The next step is to construct a set of parametric charts over

the evolving mesh. These charts correspond to (right) prisms
in the spatiotemporal domain of the texture video. We present
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combinatorial algorithms to both define these prisms and pack them
into the texture domain. This 3D spatiotemporal packing can be
seen as a generalization of traditional 2D texture atlas packing.
In summary, our contributions are:

• temporally coherent atlas parameterization of evolving meshes,
• improved geometric tracking to reduce the need for remeshing,
• reduction in tracking drift using mesh-based optical flow,
• new remeshing strategy that localizes mesh modifications, and
• efficient 3D spatiotemporal packing of parameterized charts.

2 RELATED WORK
Mesh parameterization. Many techniques partition a static mesh

into charts, flatten the charts, and pack them into a 2D texture atlas
[e.g., Lévy et al. 2002; Sander et al. 2001; Sheffer et al. 2006]. When a
fixed connectivity template is used to track a sequence of animation
frames, the same parameterization can be used for all frames. We are
not aware of any work that builds persistent atlas parameterizations
for meshes with temporally evolving connectivity.

Mesh tracking and deformation. Several techniques fit scanned
3D data by deforming a mesh template over successive frames
while maintaining fixed mesh connectivity [e.g., Budd et al. 2013; Li
et al. 2009, 2008; Starck and Hilton 2007; Zollhöfer et al. 2014]. The
deformation process optimizes both the fit to the input data and
some regularizing deformation energy, e.g., the as-rigid-as-possible
(ARAP) metric evaluated over either a coarse deformation graph
[Sumner et al. 2007] or fine-scale mesh neighborhoods [Sorkine and
Alexa 2007]. Like [Bojsen-Hansen et al. 2012], we successively apply
both coarse- and fine-scale tracking.
Tevs et al. [2012] present a sparse-to-dense correspondence

approach for synthesizing a mesh template from an input sequence.
They track correspondences across non-consecutive frames to allow
fill-in of missing data (due to, for example, occlusion).
Few existing tracking techniques exploit the surface color field.

Li et al. [2012] use SURF descriptors and image-based optical flow
to track features in recorded videos and thereby set sparse temporal
point correspondences. Our approach builds dense correspondence
maps on the mesh surfaces using mesh-based optical flow [Prada
et al. 2016] to iteratively refine mesh tracking.

Surface correspondence. A closely related problem is to compute
correspondence maps between surfaces or point clouds [Kim et al.
2011; Maron et al. 2016; Solomon et al. 2016]. These global methods
could improve tracking robustness but are expensive to compute.

Evolving meshes. Wojtan et al. [2009] and Bojsen-Hansen et al.
[2012] apply local remeshing operations (edge collapses, splits, and
swaps) to maintain well-shaped triangles as a mesh deforms. They
use a voxel grid to identify regions where the deformed mesh
fails to align with the target. Specifically, they compute isosurfaces
from the signed-distance fields of the two meshes and examine the
topological consistency of the isosurfaces in the voxel grid. We relax
the constraint on local topological consistency between source and
target. Instead we identify surface points with significant geometric

error and grow remesh regions about those points. We use a voxel
grid both to grow each remesh region and to stitch its boundary.
Bojsen-Hansen et al. [2012] associate surface attributes with

mesh vertices and propagate these attributes temporally through
point correspondences across remeshing operations. In contrast,
we store surface attributes using a texture parameterization that is
evolved over the remesh modifications. We cast atlas chartification,
parameterization, and packing as 3D problems.

3 OVERVIEW
The input to our algorithm is a temporal sequence of unstructured
colored meshes {Fi = (Ti ,Vi , ρi )}, where each frame Fi is repre-
sented by a triangulation Ti , a set of 3D vertex positions Vi , and a
map ρi from the mesh surface (Ti ,Vi ) to colors.

Our goal is to create a time-evolving mesh
{
F ′i = (T ′

i ,V
′
i ,U

′
i , I

′
i )
}
,

with 2D vertex texture coordinates U ′
i and texture images I ′i , that

looks similar to the input sequence but has temporal coherence in
connectivity, geometry, parameterization, and texture.

The creation of the time-evolving mesh {F ′t } proceeds in 4 steps:

Tracking (§4): Given the new geometry (T ′
i ,V

′
i ) at time i , we deform

its vertex positions, to obtain the geometry (T ′
i , Ṽ i+1) that fits the

input geometry (Ti+1,Vi+1) from the next frame.

Remeshing (§5): We identify regions in the deformedmesh (T ′
i , Ṽ i+1)

that fail to match the input and replace these with input geometry,
obtaining the remeshed geometry (T ′

i+1,V
′
i+1) for the next frame.

Parameterization (§6): We leverage the temporal coherence of the
triangles T ′

i in the output geometry to define coherent texture
atlasesU ′

i for better compressibility.

Texture sampling (§7): We sample the input surface color ρi into the
new texture I ′i using the mapU ′

i and encode the result as a video.

4 TRACKING
To reuse mesh connectivity, we deform the output geometry (T ′

i ,V
′
i )

from frame i (referred to as source) to match the input geometry
(Ti+1,Vi+1) from frame i + 1 (referred to as target) by assigning new
vertex positions,V ′

i → Ṽ i+1. Our tracking strategy has three phases:
we use a deformation graph combined with a new correspondence-
pruning technique to coarsely align the source to the target (§4.1);
we use mesh-based optical flow to correct for tangential drift (§4.2);
and we refine the registration using a per-vertex ARAP energy (§4.3).

4.1 Coarse alignment
While the discussion below describes correspondences from the
source to the target, in practice we symmetrize the process by using
correspondences in both directions.
Our coarse tracking algorithm is based on traditional non-rigid

deformation algorithms [e.g., Li et al. 2008; Sumner et al. 2007]
augmented with an improved point correspondence. We start
by constructing a coarse deformation graph where each node
corresponds to a local linear transformation and iteratively alternate
between three steps: identifying point correspondences, estimating
deformation parameters, and updating the pose. (We use 600 nodes.)

As in the work of [Li et al. 2008], the deformation parameters are
represented by a rotation Rj and translation tj at each node of the
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Fig. 2. Without normal consistency, nearest-point correspondences are valid
for motions smaller than the separating distance. With, this validity extends
to motions on the order of the separating distance plus the model thickness.

deformation graph and are obtained as the minimizers of an energy
combining smoothness, interpolation, and rigidity terms:

E = α · ES + β · EI + γ · ER

where ES ({Rj , tj }) measures the variation in deformation parame-
ters between adjacent nodes in the deformation graph, EI ({Rj , tj })
measures the distance between corresponding points, ER ({Rj })mea-
sures the extent to which the transformations are rotations, and the
weights (α , β,γ ) balance between the energies.

Correspondence pruning. Li et al. assign point-to-point correspon-
dences from the source to the target using a closest-point query with
normal consistency. We extend this by using region-based pruning
to discard subsets of bad correspondences.
Figure 2 visualizes our motivation. If the source is composed of

shapes S1 and S2 that are a distance of ε apart, and the target is
obtained by fixingT1 = S1 and settingT2 to a translation of S2, then
points on Sj will remain closer to points onTj as long the translation
is smaller than ε/2, (e.g. translating upwards by more than ε/2 will
bring T2 closer to S1 than S2). Thus, nearest-point correspondences
are only guaranteed for well-separated surfaces.
If we assume that S1 has thickness τ , then the use of normal

consistency extends the guarantee to displacements up to (ε + τ )/2,
and correspondences will be correct even when the surfaces are not
well-separated, so long as they are “thick”.

We mitigate the “thickness” assumption by noting that while
bad correspondences can occur with normal consistency, they tend
to form over small regions. We identify continuity clusters on the
source and discard correspondences from clusters that are too small.

More precisely, setting ϕ : S → T to be the nearest-neighbor map
and d(·, ·) the geodesic distance on T , we assign a continuity score
to an edge e = (p,q) in S by measuring distance on T :

c(e) = d(ϕ(p),ϕ(q)).

We remove all edges in the mesh S whose continuity weight is above
a threshold and identify the connected components of the pruned
graph. Finally, we discard correspondences from components whose
area is below a threshold. (We set the thresholds for distance and
area to 5 cm and 1/5-th of total area, respectively.)
For efficiency, we do not compute geodesic distances for all

(p′,q′) = (ϕ(p),ϕ(q)). Instead, we perform furthest-point sampling
to find landmarks {l1, . . . , lℓ} ⊂ T on the target.We find the solution
to the single-source geodesic problem for each landmark [Surazhsky
et al. 2005] and store the ℓ-dimensional vector of distances,
®dp′ = {d(p′, l1), · · · ,d(p′, lℓ)}. Using the triangle inequality, we
approximate the distance d(p′,q′) by ∥ ®dp′ − ®dq′ ∥∞. (We set ℓ = 6.)

Source Target Without pruning With pruning

Fig. 3. Example with a handmoving off the body between the source and the
target frames. Correspondences are pruned by proximity (>10 cm), normal
consistency (>90◦), and continuity-cluster size (<20%), shown in blue, green,
and red, respectively. Without continuity-cluster pruning, correspondences
exist between source points on the hand and target points on the body,
pushing the arm towards the torso in the deformation. Pruning discards
these bad correspondences, letting the arm move freely to match the target.

Figure 3 shows an example of the improvements gained by prun-
ing small continuity clusters. Without the pruning, correspondences
are kept between points on the (thin) hand of the source and points
on the body of the target, resulting in a deformation that fails to
separate the two. With pruning, such correspondences are removed
and the hand moves cleanly away from the body.

4.2 Texture-based registration
The coarse alignment process uses only geometric information to
define correspondences and thus cannot account for tangential drift
on continuously symmetric surfaces. In our work, avoiding this drift
is desirable to preserve the alignment of texture detail, ultimately
making the texture videos easier to compress. (Video codecs have
motion prediction, but their block-based strategy performs poorly
across the parametric discontinuities associated with texture chart
boundaries, as confirmed in the results of Table 2.)
We use mesh-based optical flow [Prada et al. 2016] to detect

tangential drift and adjust the correspondences as follows. Starting
with the coarse alignment described above, we compute the
Laplacian of the color signals (to eliminate constant color offsets
that result from lighting changes) and transfer the color Laplacian
from the deformed source to the target by sampling from the closest,
normally consistent, point on the source. Next, we compute the
vector field ®v aligning the Laplacians of the input and sampled color
fields on the target, and define a new correspondence map

ϕ̃(p) = Adv ®v,1 (ϕ(p))

where Adv ®v,s (p) is the map advecting p ∈ T along ®v for duration s .
Given the adjusted correspondence ϕ̃, we rerun coarse alignment

to get an improved registration. This process is iterated using
the deformed source from the previous pass to define new
correspondences and a new optical flow field. (We use two optical-
flow-adjusted passes in addition to the initial coarse registration.)

Figure 4 highlights the importance of optical-flow correction. The
models are obtained by deforming the positions of a mesh with
fixed connectivity and fixed texture coordinates to match different
frames of an animation sequence. Blending the parts of the three
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Fig. 4. Comparison of texture atlases without (top) and with (bottom)
optical-flow adjustment, showing three frames of a sequence (left), the
associated texture maps (middle), and a blend of the face textures (right).

texture maps corresponding to the face of the ballerina, we see
pronounced ghosting when optical flow is not used (top). In contrast,
incorporating optical-flow preserves the locations of fine features
like the eyes and ears in the texture (bottom).

4.3 Fine registration
Given the small number of nodes in the deformation graph, coarse
alignment has insufficient degrees of freedom to register fine detail.
We refine the coarse alignment using the ARAP deformation of
[Sorkine and Alexa 2007]. (We chose ARAP rather than a regularized
normal offset as in Bojsen-Hansen et al. [2012] because ARAP
constrains the deformation to preserve triangle shape, ensuring
that distortions do not accumulate over successive deformations.)
We briefly recall the ARAP approach. ARAP deformation

alternates between local and global optimizations. In the local phase,
a rotation is computed at each vertex that best aligns the source and
target one-rings. In the global phase, a vector-field is computed by
using the rotations to transform the difference between neighboring
source vertices. A Poisson system is then solved to find new vertex
positions whose gradients (softly) match the prescribed vector-field
and whose positions lie near the corresponding target points.
In our implementation, we define the correspondences using

normal consistency and continuity cluster pruning, as in Section 4.1.
To solve for the rotation at a vertex, we use the geometry of the one-
ring in the progenitor frame (the output frame that first contains
the vertex and its one-ring) to ensure that triangle quality does not
deteriorate over time. (We perform 10 local/global iterations.)

5 REMESHING
Due to potentially significant changes in the geometry and topology
of the input, it is often impossible to track a single mesh through
the entire sequence. In this section, we describe how an evolving
mesh addresses this problem. We identify seed points on both the
(deformed) source and the target where tracking fails (§5.1) and
replace the deformed source geometry with the target geometry in
such regions (§5.2).

Input Tracked
(without remeshing)

Tracked
(with remeshing)

Ti
m

e
Fig. 5. Close-up on fingers in three successive frames, comparing tracking
quality with fixed mesh connectivity and with our adaptive remeshing.
Newly remeshed geometry is highlighted in red.

As a motivating example, Figure 5 shows close-ups of three
consecutive frames, comparing the target (left), tracked (middle),
and remeshed (right) geometries. Due to the fine detail of the fingers,
tracking alone fails to provide a good deformation from the source
to the target and this failure is propagated over the course of the
sequence. Using remeshing, we obtain a geometry that not only is
a better fit to the current target, but also provides a higher-quality
source for deformation in subsequent frames.

5.1 Identifying tracking failure
We identify seed points on the source (T ′

i , Ṽ i+1) and target
(Ti+1,Vi+1) for remeshing, using both geometric and parametric
measures of failure. In contrast to prior work, local topological
changes in the target mesh (such as tiny handles or tunnels) do not
necessarily trigger remeshing events.

Geometric failure. We detect if a vertex of the source (resp. target)
mesh is far from the target (resp. source). We modulate the distance
by the “importance” of the vertex, measured in terms of its visibility
and geometric detail. The motivation is to de-emphasize hidden
surface regions (e.g., underside of a jacket) while promoting regions
with small features (e.g., fingers). For a source vertex v we set:

EG (v) = d(v)

(
1 + vis(v)

(
α + β ·min

(
m(v)

mmax
, 1
)))

where d(v) is the distance to the target mesh, vis(v) is a proxy for
ambient occlusion (measured using rays in the cone that makes a
45◦ angle with the vertex normal), andm(v) is the mean curvature.
We then mark a vertex as a geometric failure if EG (v) exceeds
a prescribed threshold. (We set the threshold to 10 cm and fix
(α , β) = (1, 4/3) andmmax = 5 cm−1.)
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In addition, we also consider flipped source triangles as instances
of geometric failure. In our implementation we declare a triangle
to be flipped if casting a ray in the negative normal direction does
not intersect another surface. If we find a sufficiently large edge-
connected component of such triangles, we mark them as seeds.
(We mark components consisting of five or more triangles.)

Parametric failure. Because our framework holds constant the
texture coordinates of tracked triangles, we identify triangles that
grow too much in the course of tracking (and hence would cause
texels to be stretched over the surface [Sander et al. 2001]), marking
such triangles for remeshing. Specifically, we compute the Jacobian J
of the map from each original triangle to its current shape in the
deformed mesh and test if the squared Frobenius norm ∥ J ∥2F exceeds
a threshold. If we find a large edge-connected component of such
triangles, we mark them as seeds. (We set the threshold to ∥ J ∥2F > 8
and identify components consisting of ten or more triangles.)

5.2 Remeshing poorly tracked regions
For each remeshing seed identified on either the source or the target,
we determine a pair of corresponding regions on the two meshes
and replace the geometry in the source with that of the target.

Identifying corresponding regions. To define corresponding re-
gions, we adapt the voxel-based approach of [Wojtan et al. 2009].
Their technique embeds the source and target meshes in a voxel
grid and grows regions by progressively adding voxels until the
boundaries of the intersections with the source and target match.
The voxel set V is initialized using just the voxel containing

the seed and is grown into face-adjacent voxels (in a breadth-first
manner) until the two meshes are consistent with respect to all
the faces on the voxel set boundary. Two meshes are defined to be
consistent with respect to a voxel face if the two meshes intersect
the same set of edges in the same order.

Figure 6 (top left) shows a visualization with the initial seed (green
sphere) on the target geometry. It shows the grown voxel set V in
green wireframe (second column) and highlights the consistency
(at voxel granularity) of the two meshes along its boundary.

Replacing source with target geometry. As our goal is to best
preserve the input geometry, we cannot use the isosurfacing
approach of [Wojtan et al. 2009] to introduce target geometry into
the source. Instead, we explicitly join the triangulations of the source
outside the voxel setV with the triangulation of the target insideV .

Specifically, given the voxel set V , we clip the source and target
meshes to the boundary ofV , remove the source triangles inV ∩ S
and fuse the remainder with the target triangles in V ∩ T . We
perform the fusion by stitching together the two boundaries and
then creating a seamless blend across the stitch (Figure 6, bottom).

Stitching. From the face-based consistency constraints, we have
a one-to-one correspondence between cycles of edges on the
boundaries of the clipped source and target. For each such pair, we
parameterize the source and target cycles uniformly over the unit
interval and introduce new interior source (resp. target) vertices
at the corresponding parametric positions of the interior target
(resp. source) vertices, performing edge splits as we do.

So
u

rc
e

Ta
rg

et

Input Consistent Voxel Growing Segmented

Stitched BlendedFig. 6. Visualization of remeshing, showing the source and targetmesh (with
the remeshing seed as a green sphere), the result of consistent voxel growing,
and the segmented source and target regions. We use correspondences
between boundary vertices to stitch these together (bottom left) and blend
the geometry to obtain a seamless remesh (bottom right).

Now that the source and target regions have boundaries with
vertices in one-to-one correspondence, we stitch the surfaces by
replacing each corresponding vertex pair with its average.

Blending. To improve the transition between the source and target
surfaces, we compute the two-ring neighborhood of vertices along
the stitching seam, lock the vertices outside this region, and iterate
between (Laplacian) smoothing the vertex positions [Taubin 1995]
and removing poorly shaped triangles using edge collapses. Due to
the locking, this approach generates a surface that is not smooth
at the seam. Smoothness could be obtained, for example, by using
bi-Laplacian / Willmore energies [Bobenko and Schröder 2005].

6 ATLAS PARAMETERIZATION
Tracking produces a sequence of meshes in which a large subset
of triangles is tracked from one frame to the next. These tracked
triangles form temporal chains. Our goal is to create a partition of all
triangles into spatiotemporal charts, where each chart consists of a
connected component of chains with identical lifespans. Intuitively,
a chart is a surface region that is tracked from a given start frame
to a given end frame. We assign to each chart a fixed 2D texture
parameterization (i.e., constant vertex texture coordinates for all
tracked triangles in the chart). In determining the partition into
charts, we seek to maximize both temporal and spatial coherence.
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We measure temporal coherence as the average triangle lifespan.
We favor longer lifespans to reduce the number of stored texture
coordinates and to maintain temporal coherence in the resulting
texture video.
We measure spatial coherence as the average number of charts

per frame. We favor fewer charts to reduce unused gutter texels
needed to separate charts and to minimize the presence of texture
discontinuity curves on the rendered meshes.
Optimizing either coherence term alone is straightforward.

Maximizing temporal coherence corresponds to creating maximally
long chains of tracked triangles, independent of neighboring
triangles, but this often leads to small charts. Maximizing spatial
coherence is achieved by making all charts have a lifespan of a single
frame, so that all triangles in a frame can be parameterized together.
In this section we describe our approach for simultaneously

optimizing both objectives (§6.1), parameterizing the resulting
charts (§6.2), and assembling them into a 3D texture map (§6.3).
We begin, however, with some notation.

Notation. LetT ′
i be the triangles in the remeshed output of frame i .

Given triangles ti ∈ T ′
i and ti+1 ∈ T ′

i+1, we write ti 7→ ti+1 when
triangle ti is deformed into triangle ti+1 by the tracking.

• A chain is a subset of nodes {ts , . . . , te } with ti 7→ ti+1.
• The lifespan of a chain {ts , . . . , te } is the interval [s, e].
• The neighbor graph on

⋃
T ′
i , denoted N , is the graph with an

edge between two triangles/nodes if either they are adjacent in
the same frame, or one tracks to the other (in adjacent frames).

• A chart is a connected subgraph C ⊂ N whose nodes form
chains with identical lifespan, which is denoted IC = [sC , eC].

• Two charts are neighbors if they are connected by an edge inN .
• The cross-section of a chart at time i is C(i) = C ∩T ′

i .
• An atlas is a set of charts that partitions the neighbor graph N .

Figure 7 (top) shows a visualization of a neighbor graph with
subgraphs C1 and C2 highlighted. Though both are composed of
two chains, only C1 is a chart. Figure 7 (bottom) shows two different
atlases on N . The one on the left maximize temporal coherence
and, among all such maxima, also maximizes spatial coherence. The
one on the right maximizes spatial coherence and, among all such
maxima, also maximizes temporal coherence.

1 5 732 6 84

Time
𝒩

𝒞1
𝒞2

Fig. 7. Visualization of a neighbor graph (N). The top row shows two
subgraphs, one of which is a chart (C1) and one of which is not (C2). The
bottom row shows two possible atlases.

Geometric interpretation. We think of a chart C as a (right) prism
through the neighbor graph, with time as its axis, and the cross-
section at time i given by C(i). This allows us to define the cap area
as twice the average of cross-sectional areas and the side area as
the sum of the perimeter lengths of the cross-sections:

∥C∥C =
2

|IC |
·
∑
s ∈IC

|C(s)| and ∥C∥S =
∑
s ∈IC

|∂C(s)| .

6.1 Charting
To find a good atlas, we define an energy on the space of atlases,
design editing operators to transform one atlas into another, and
greedily choose edits that reduce the energy.

Optimization energy. We define the energy of an atlasA to be the
sum of temporal and spatial coherence terms, summed over the atlas
charts. We note that a chart ceases to be temporally coherent at its
temporal boundaries (its two caps). Similarly, it ceases to be spatially
coherent along its spatial boundaries (its sides) and becomes less
coherent as it narrows. Taking these in conjunction, we set:

E(A) =
∑
C∈A

E(C) with E(C) =

(
∥C∥C + α ·

∥C∥S
∥C∥C

)
.

(We fix α to 10 times the average radius of a triangle.)

Atlas editing operators. To support exploration of the space of
atlases, we define an atlas edit operator as the composition of
primitive transformations. The spatial merge takes two neighboring
charts with identical lifespans and joins them into a single chart.
It keeps the temporal coherence energy fixed and improves spatial
coherence by removing boundaries and increasing the cross-
sectional area. The temporal split takes a chart and divides it along
a cross-sectional slice. It worsens temporal coherence, but lets us
trim the lifespans of adjacent charts so they can be merged.

𝒞𝑙

𝒞𝑚

𝒞𝑘

𝒞𝑗

𝒞𝑛

Then, given spatially neigh-
boring charts Cj and Ck , we
construct an edit operator com-
posed of at most two temporal
splits (to align the lifespans of
the charts) followed by a spatial merge of the charts with identical
lifespans. This edit creates at most three charts Cl , Cm , and Cn and
its change in energy is

∆E =
(
E(Cl ) + E(Cm ) + E(Cn )

)
−

(
E(Cj ) + E(Ck )

)
.

Greedy energy descent. We define a base atlas by computing
maximal chains in the neighbor graph and clustering neighboring
chains with identical lifespans. This atlas minimizes the temporal
coherence energy and, of all such minimizers, it is the one that
minimizes the spatial coherence energy.
We optimize the atlas by maintaining a heap of candidate edits,

sorted by their associated change in energy. We pop a candidate
edit off the heap, perform the edit if the associated charts have not
been modified already, create new candidate edits between the new
chart and its neighbors, and insert these candidates into the heap if
they have negative energy change ∆E.
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Lifespan-clustered Split & Merged Parameterized

Fig. 8. Visualizations of the charts at two frames of the “selfie” sequence.

6.2 Unwrapping
Given an atlas, we unwrap each chart, mapping it into texture space.
For a chart C we take geometry from the first cross-section, C(sC),
and use UVAtlas [Microsoft 2011] to obtain the parameterization of
the 2D cross-section. This parameterization is then extruded across
the lifespan of the chart.
We note that even though each chart is connected, we are

not guaranteed that the unwrapping will occupy a contiguous
region in texture space because the parameterization may divide
a chart into multiple components to limit geometric distortion.
These components form a refined chartification, which we call the
parameterized atlas.
Figure 8 visualizes the cross-sections of the charts at two

intermediate frames of the “selfie”’ sequence. The images show
cross-sections of the initial lifespan-clustered, optimized, and
parameterized charts as distinct patches on the surface as well as
the mapping of the parameterized atlas into texture space. (Charts
are colored as in Figure 1, using hue and saturation to denote the
mid-point and duration of a chart’s lifespan.)
As this sequence does not exhibit large distortion, our method

can successfully track big charts with long lifespan, visualized by
the large gray patches with fixed position.

6.3 Packing
Given the unwrapped charts, we pack them into a 3D texture atlas.
Our design strategy aims to support a streamable representation
whereby a lightweight client need only store and access a single
frame of texture video per rendered frame. Also, we constrain the 3D
texture charts to be right prisms, so vertices have constant texture
coordinates over their lifespans.

To assign texture coordinates to the unwrapped charts, we sort
charts by cap area and incrementally place them in the texture
volume. (We also tried sorting by chart volume and lifespan, but
found that cap area gives the most efficient packing.)
Using the fact that the unwrapped charts are extrusions of 2D

cross-sections, we can reduce the placement to a 2D problem.
Specifically, given the chart C, we consider all previously placed
charts which overlap the lifespan of C, flatten them onto the 2D
plane and search for locations in 2D that are empty of previously
placed charts and can fit the cross-section of C.

We find such locations by using the approach of [Lévy et al. 2002]
which defines horizons for both the current texture map and the
chart to be inserted. The horizon is an envelope defined around a
line, with one horizon contained in the free space of the texture
domain and the other containing the chart. Shifting one horizon
along the other provides an efficient way to identify locations in
texture space which can accommodate the new chart.
While a direct implementation successfully places the charts, it

is not efficient. This is because the original method uses a single
texture horizon at the top of the 2D domain, and places the new
charts as close to the bottom as possible. As the packing is performed
from bottom to top, the horizon provides a good representation of
the remaining free space. In our context, we perform the packing
in 2D texture space, but then extrude the result into the 3D texture
volume, with different charts extruded by different lifespans. Thus,
even if charts appear to be tightly packed at the bottom of one
2D flattening, the packing may not be tight when flattened onto a
different lifespan.
To work around this, we use multiple horizon lines for the 2D

texture space, testing each one to identify candidate locations. Once
the locations are identified, we place the chart at the location closest
to the projected center of all the charts already placed into the
atlas. (We use 16 evenly spaced horizontal and vertical lines in our
experiments and have found diminishing returns when using more.)

7 TEXTURE SAMPLING
In the final step of our processing, we assign color values to both
the interior and gutter texels of the texture video.

Assigning interior texels. Given the packed charts, we assign a
color value to an interior texel at time i by sampling the input
color ρi . If the color ρi is originally defined from projected camera
images, sampling is performed by back-projecting into the most
forward-facing camera as in [Collet et al. 2015]. Otherwise, we
sample ρi at the closest point on the input geometry.

Diffusing into gutter texels. To improve video compression, we
smoothly diffuse the texel values at chart boundaries into the gutters.
We do this by solving a 3D Laplace equation, using an approximate
coarse-to-fine solver. At each level of the hierarchy, we label the
texels as either gutter or boundary, discretize the system using a
7-point Laplacian with Neumann constraints at the boundaries of
texture space and Dirichlet constraints at seam boundaries, and
perform Gauss-Seidel relaxation to update the solution. At the finest
resolution, the gutter texels and boundary values are given. At
coarser resolutions, a texel is in the gutter if all of its eight children
are gutter texels, and the value of a boundary texel is set to the
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Geometric accuracy Parameterization coherence Packing efficiency
(distance in mm) Temporal: lifespan Spatial: charts/frame (3D occupancy)

Sequence Frames KF1 KF2 EV KF1 KF2 EV KF1 KF2 EV KF1 KF2 EV

Selfie 360 1.0 0.3 0.6 45.0 9.5 257.2 23 24 45 70% 71% 72%
Macarena 520 1.7 0.5 0.7 16.0 13.3 306.4 28 33 65 73% 71% 72%
Slick 607 1.5 0.5 1.2 12.4 10.1 179.3 25 26 102 69% 70% 65%
Soccer 471 1.6 0.5 0.8 14.7 5.8 134.7 25 24 94 72% 71% 65%
Breakers 491 1.8 0.4 0.8 14.0 6.4 108.6 17 16 141 65% 68% 64%
Jumping Jacks 259 1.9 0.5 0.9 8.4 4.1 81.2 28 25 123 71% 70% 63%
Chair 542 0.9 0.5 1.0 4.3 3.0 96.3 53 55 210 72% 73% 62%
Girl 700 1.3 0.4 0.9 5.2 3.3 48.5 27 27 158 70% 70% 59%
Ballerina 220 1.9 0.4 1.1 5.1 1.9 34.9 69 63 235 75% 73% 65%
Clothing 731 0.9 0.4 0.9 3.8 1.7 31.8 42 42 226 72% 72% 43%

Table 1. Geometric and parametric properties of the output tracked meshes for three approaches (mesh keyframes and our evolving mesh), comparing the
average residual distance (in mm) of the tracked meshes, the average triangle lifespan (in frames), the average number of charts per frame, and percentage
occupancy of the texture video. (Ideal results should have small distance residuals, long lifespans, fewer charts, and high occupancy.)

average of the values of its non-gutter children. Once the system
is relaxed at the coarser resolution, the solution is prolonged into
the next resolution by replicating the values of each gutter and
boundary texel at the coarse level into its (at most eight) gutter
children. (We use 10 passes of Gauss-Seidel relaxation at each level.)

8 RESULTS AND DISCUSSION
To evaluate our method, we process ten sequences, ranging in length
from 220 frames to 731 frames (at 30 fps), where each frame consists
of a mesh of 40K triangles, textured from projected camera views as
in the work of [Collet et al. 2015]. All sequences exhibit some change
in surface genus over their duration, with the complexity ranging
from a simple sequence in which a character removes a cell-phone
from his pocket to take a picture (“selfie”) to a complex one in which
a character removes a shirt and puts on a jacket (“clothing”). Table 1
orders the sequences from simplest to most complex. We generate
time-evolving meshes with approximately 40K triangles per frame
and 1024×1024 textures.
Figure 9 shows several frames from six sequences, along with

the parameterized charts at the first and last frames. Again the
sequences are ordered from simplest to most complex, and we
see a commensurate increase in short-lifespan charts (shown with
saturated colors).
We compare the results of our evolving mesh approach (EV) to

the keyframe meshes (KF) of [Collet et al. 2015]. Both approaches
leverage tracking to obtain a temporally coherent representation of
the mesh, with tracking failure used to initiate keyframing/remesh-
ing. The difference is that while we replace only the subset of the
geometry, the keyframing approach replaces the entire mesh. We
compare to two variants of the keyframe approach. In the first (KF1),
we define tracking failure strictly in terms of distance to the target
and set the threshold to obtain results similar to those described
in [Collet et al. 2015]. In the second (KF2), we use the same mea-
sure of tracking failure as for our evolving mesh and incorporate
optical-flow adjustment in the tracking process as well.

Geometric quality. Table 1 (left) compares the accuracy of the
surfaces produced using keyframing with the accuracy produced
using an evolving mesh. The distance between two surfaces is given
by the symmetrized average distance between a point on one surface
and the nearest point on the other [Jacobson et al. 2016].

The table shows that all three methods generate accurate output
geometry, with an average error of 0.5–2.0 mm, or roughly 1/1000th
of the model size. When using keyframe meshes with the same
measure of tracking failure as our approach, the approach of [Collet
et al. 2015] produces output with smaller average distances, because
each keyframe replaces the entire geometry at a frame of tracking
failure so the distance is reset to zero everywhere.

Coherence. Themiddle of the table compares the parameterization
coherence of the approaches. Temporal coherence is measured
by the average lifespan of triangles in the parameterized atlas,
while spatial coherence is measured by the average number of
disconnected charts in a cross-section.
The table reveals the trade-off between optimizing for temporal

and spatial coherence. Both variations of keyframemeshes construct
a parameterization using the geometry from a single frame, resulting
in 2D texture maps that are optimally spatially coherent. In contrast,
our approach begins with an optimally temporally coherent mesh
and transforms it to balance the two criteria. As a result, our evolving
mesh produces triangles with significantly higher average lifespan
while creating more disconnected 2D cross-sections. (Though not
shown here, the temporally optimal atlas from Section 6.1 produces
charts with a lifespan that is 35% longer, on average.)

The spatial optimality of both variants of keyframing is reflected
in the fact that the two implementations generate similar numbers of
charts per frame. The difference becomes evident when considering
temporal coherence. Using amore conservativemeasure for tracking
failure (KF2) creates keyframes at a higher frequency, resulting in
substantially shorter lifespans. The use of a laxer measure (KF1)
alleviates this but comes at the cost of degraded geometric fidelity.
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Fig. 9. Frames from the “Macarena”, “slick”, “soccer”, “breakers”, “chair”, and “girl” sequences, showing the parameterized charts on the surface and in texture
space. Hue and saturation visualize the midpoint and length of each chart’s lifespan. (Red is early, blue is late, and saturated colors have shorter lifespan.)
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Sequence Input KF1 KF2 EV−− EV+− EV++

Selfie 7.8 (64.3) 1.8 (6.6) 2.4 1.8 1.7 1.5 (6.3)
Macarena 5.8 (64.1) 2.3 (8.7) 2.1 2.2 2.0 1.9 (7.3)
Soccer 6.0 (64.9) 3.0 (12.0) 3.2 2.9 2.7 2.7 (9.8)
Girl 9.7 (65.6) 5.9 (19.8) 5.9 6.4 5.6 5.4 (11.5)
Ballerina 9.1 (65.8) 6.5 (21.7) 7.1 6.5 6.4 5.8 (14.5)
Chair 7.8 (64.8) 3.6 (19.7) 4.2 3.4 3.4 3.1 (10.4)

Table 2. Texture video bitrates (Mbps) for the unstructured input, keyframe
meshes, and an evolving mesh without optical flow or harmonic fill-in
enabled (−−), with optical flow but without harmonic fill-in enabled (+−),
and with both optical flow and harmonic fill-in enabled (++).
(Geometry bitrates are given in parentheses.)

Packing efficiency. The right of Table 1 compares the packing
efficiency of the three methods and highlights a challenge of using
an evolving mesh. In contrast to keyframe meshing which packs
charts in 2D, our approach must solve the more difficult problem
of packing charts in 3D. One implication of this is that texels have
a “size” that persists across the 3D texture volume, so the fraction
of area occupied in a 2D texture slice is bounded by the ratio of
the surface area seen in that frame to the maximum surface area
seen in any frame of the sequence. In particular, for sequences like
“clothing” where large parts of the geometry are only revealed in a
small subset of the sequence, the texture atlas will not be packed
efficiently. (This is evident in Figure 1, where the 2D texture space
in the first, second, and fourth frames is only partially occupied
because of the larger surface area in the third.) Fortunately, the
texture gutter areas compress well using standard video encoders.

Video compression. As a measure of coherence, we use the bitrate
of the texture video compressed with H.264/MPEG-4 at a fixed
quality level, i.e., the default constant rate factor (CRF) of 23. Table 2
assesses the impact of the individual steps in our approach on
coherence. It shows the bitrate for the unstructured input, keyframe
meshes, an evolving mesh without optical flow or harmonic fill-in,
an evolving mesh with optical flow but without harmonic fill-in, and
an evolving mesh with optical flow and harmonic fill-in. To adjust
for the different packing efficiencies, we adjust the resolutions of
the texture atlases such that the number of interior texels for a given
sequence matches that resulting from our EV++ approach.
As Table 2 demonstrates, the different steps of our adaptive

remeshing all improve the compression quality, resulting in a
roughly 12% reduction in compressed texture storage. (Similar
experiments using a lower-quality CRF of 29 show more significant
reductions, of roughly 18%.)

Geometry compression. Though we do not address this problem
in our work, we use naïve encoding to evaluate the effects of our
method on mesh storage. We represent a chart (with N triangles per
frame and a lifespan of ℓ) using 16-bit integers for vertex indices
(connectivity), quantized vertex positions, and quantized texture
coordinates. Connectivity and texture coordinates need only be
stored for the first frame of the chart, requiring roughly 8 · N bytes.
Vertex positions are encoded at each frame and are represented
using absolute position values in the first frame and changes (deltas)
in subsequent frames, requiring roughly 3 · N · ℓ bytes. Finally, we

(§4) Tracking 66.3
Coarse alignment / Texture-based registration / Fine registration 29.4 / 30.3 / 6.6
(§5) Remeshing 1.3
Identifying tracking failure / Remeshing poorly tracked regions 0.3 / 1.0
(§6) Parameterization 0.3
Charting / Unwrapping / Packing 0.1 / 0.1 / 0.1
(§7) Texture Sampling 14.9
Assigning interior texels / Diffusing into gutter texels 14.6 / 0.3

Average frame processing time 82.8

Table 3. Average time in seconds to process each frame of the Slick sequence.

leverage repetitions in the deltas, storing the data as a .zip file with
default compression.
The parenthesized values in Table 2 are the geometry bitrates

for the input, keyframe mesh approach, and our time-evolving
representation. The bitrate for the input geometry is high because
connectivity, texture coordinates, and absolute position values
must all be stored at each frame. Both the keyframe approach
and our method show marked improvement due to the sparse
storage of connectivity and texture parameterization, as well as
the compressibility of the quantized change in position values. The
table also highlights that with the increased lifespan of our charts,
we are able to achieve a roughly 30% reduction in geometry storage
size over the keyframe approach, on average.

Performance. Table 3 breaks down the average time for processing
the frames of the Slick sequence on a PC with a quad-core i7-
5700HQ processor and 16GB of memory. The tracking stage,
which is run for all the 606 pairs of consecutive frames, takes the
longest. The remeshing stage is called only when a poorly tracked
region is detected. (For the Slick sequence this happens in 122
frames.) Though the parametrization stage is global, the associated
computation takes a small fraction of the total runtime. Texture
sampling is a relatively expensive stage but is easily parallelized.

Our running time is comparable to the keyframe-based approach
[Collet et al. 2015]. Both approaches incur an overhead when
tracking fails: for evolving meshes this triggers a remeshing step,
and for the keyframe approach it requires the selection of an optimal
reference geometry. As shown in Table 3, this overhead is negligible
when compared to the time spent on tracking, parametrization, and
texture sampling, steps that are required by both approaches.

Limitations. Figure 10 illustrates limitations of our approach. The
top row shows an artifact resulting from setting the geometric
penalty too large: fingers are introduced on the sleeve in one
frame (left) and persist even after the hand has moved away from
the sleeve (right). The middle row shows an artifact resulting from
setting the geometric penalty too small: while the tracked mesh (left)
provides a reasonable visual approximation of the target frame, the
presence of high frequency noise in the subsequent frame forces a
local remeshing operation (right). The bottom shows the impact of
optical flow failure: when the flow fails to align texture due to fast
tangential motion, drift becomes evident in the texture domain.
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Insufficient remeshing (remnant finger artifacts on arm):

Excessive remeshing (due to reconstruction noise):

Failure of optical-flow tracking (on fast-rotating ball):

Fig. 10. Limitations of our approach.

9 SUMMARY AND FUTURE WORK
We present a new approach for representing sequences of textured,
animated meshes. Starting from unstructured meshes, our approach
identifies spatial and temporal coherence to create a time-evolving
mesh, in which triangles persist across multiple frames, maintaining
a fixed parameterization into a texture atlas, wherein the texture
content is aligned across frames to improve compressibility.
We improve on earlier tracking methods by introducing a

correspondence-pruning approach and leveraging mesh-based
optical flow to correct for tangential drift. A new remeshing scheme
selectively replaces geometry in regions of tracking failure, avoiding
the resampling required by marching cubes. We present the first
description of the space of 3D texture atlases, and implement
an optimization algorithm to search this space for atlases with
improved spatiotemporal coherence.

We demonstrate the practicality of our framework on several high-
quality captured sequences of varying complexity, and quantify the
improvements in both coherence and compressibility.
In the future, we would like to consider several extensions,

including new metrics for evaluating the quality of meshes with
evolving connectivity, alternate strategies for exploring the space of
3D atlases, new data structures for representing temporally evolving
meshes, and less greedy approaches for packing charts into the
texture volume.Wewould also like to consider more general packing
paradigms that trade off simpler texture storage and access for better
packing efficiency. These include allowing texture content to be
displaced temporally and allowing chart prisms to be sheared for
more flexible 3D packing.
The ultimate goal is to construct time-evolving meshes that are

perceptually similar to the input meshes yet allow a compressed
streamed representation that is as compact as possible.
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