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Figure 1: Given a collection of range scans, one can obtain a set of oriented points and a depth hull volume. (Points are colored by normal
orientation.) Applying traditional Screened Poisson Reconstruction (SPR) to the oriented points yields a surface with unwanted artifacts in
regions with missing data. By incorporating the depth hull as a Dirichlet constraint within the global Poisson formulation, we prevent the
emergence of extraneous surfaces, resulting in a more accurate model.

Abstract
Reconstructing surfaces from scanned 3D points has been an important research area for several decades. One common ap-
proach that has proven efficient and robust to noise is implicit surface reconstruction, i.e. fitting to the points a 3D scalar
function (such as an indicator function or signed-distance field) and then extracting an isosurface. Though many techniques
fall within this category, existing methods either impose no boundary constraints or impose Dirichlet/Neumann conditions on
the surface of a bounding box containing the scanned data.
In this work, we demonstrate the benefit of supporting Dirichlet constraints on a general boundary. To this end, we adapt the
Screened Poisson Reconstruction algorithm to input a constraint envelope in addition to the oriented point cloud. We impose
Dirichlet boundary conditions, forcing the reconstructed implicit function to be zero outside this constraint surface. Using a
visual hull and/or depth hull derived from RGB-D scans to define the constraint envelope, we obtain substantially improved
surface reconstructions in regions of missing data.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Geometric algorithms, languages, and systems

1. Introduction

With the wide proliferation of 3D scanners, the problem of surface
reconstruction has received significant attention in the graphics and
vision communities. A popular approach is to cast reconstruction as
a global optimization problem in which one solves for an implicit

function whose level-set fits the input data points. The benefit of
combining implicit representation with global optimization is that
such techniques automatically produce watertight manifold meshes
and tend to be resilient to scanner noise, misalignment, and missing
data. However, a limitation is that these techniques are prone to
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introducing unwanted surface patches in the vicinity of occluded
or unobserved surfaces.

One approach for addressing this issue is to refrain from gener-
ating a surface in regions devoid of samples. This can be done in
one of two ways. Using compactly supported functions, the implicit
surface can be defined in regions near the samples, with no isosur-
face extracted in regions outside of the support [HDD∗92, FG14].
Alternatively, the implicit surface can be trimmed in a post-
processing phase by measuring the sampling density of the input
point set at the vertices of the output mesh and discarding subsets
of the mesh where the sampling density is too low [Kaz13].

While straightforward to implement, these approaches no longer
generate watertight surfaces and, as in the case of trimming, re-
quire the introduction of additional tuning parameters, which may
be difficult to set in a consistent manner. (See Figure 2.)

RMS = 5.1 × 10−3 RMS = 4.1 × 10−3 RMS = 5.1 × 10−3

SPR w/ trimming

Figure 2: Results of Screened Poisson Reconstruction after trim-
ming of the surface in regions of low sampling density, for differ-
ent sampling density thresholds. (Boundary edges of the triangle
meshes are drawn in blue.)

A second approach is to leverage the fact that the input point-set
is structured. Specifically, that it is most often obtained using 3D
range scanners. Assuming opaque surfaces, this not only provides
information about where the surface is, but also where it cannot
be: if a point is seen in the range scan, then the reconstructed sur-
face should not intersect the line of sight from the sensor to the
point. That is, the reconstructed surface should lie within the ob-
ject’s depth hull [BGM06] (or equivalently, ray hull [ACCS04]).

The presence of line-of-sight information has motivated carving
techniques which have been integrated within local implicit meth-
ods [CL96] and have been used in post-processing to modify the so-
lution of a global system [SSZCO10]. However, there have been no
methods to date integrating line-of-sight constraints within a global
solver, simultaneously providing the benefits of space carving and
the robustness of global methods.

Key Idea Our insight is that when the implicit function repre-
senting the reconstructed surface is an indicator function (i.e. with

value zero outside of the surface and value one inside), line-of-sight
constraints can be straightforwardly formulated as Dirichlet con-
straints on an enclosing envelope. In contrast, the signed-distance
function does not admit such constraints as the values of the im-
plicit function within the enclosing envelope depend on the distance
from the yet-to-be-determined surface. (In principle, one could im-
pose linear inequality constraints – that the values within the enve-
lope should be greater than zero – but this would require solving
a quadratic programming problem and would be significantly less
efficient.)

Approach To this end, we adapt the Screened Poisson Reconstruc-
tion method [KH13, KH19] to take as additional input a watertight
mesh that envelops the space within which the reconstructed sur-
face must lie. We rasterize the envelope mesh into the adapted oc-
tree and perform a flood-fill so as to identify octree leaf nodes that
are strictly exterior to the surface. We then adapt the finite-element
basis such that the basis functions’ supports do not overlap exterior
nodes, so as to obtain an implicit function that is guaranteed, by
construction, to vanish outside the envelope surface.

2. Related Work

Reconstructing surfaces from point samples has been an impor-
tant problem in the graphics and vision community for more than
three decades. While there are numerous approaches to solving this
problem, including techniques using surface-fitting [TV91,CM95],
spectral segmentation [KSO04], and computational geometry tech-
niques [Boi84, EM94, BBX95, BMR∗99, ABK98, ACK01], we fo-
cus this review on implicit approaches. These approaches recon-
struct the surface by first fitting an implicit function to the input
point-set and then extracting an isosurface of the implicit function.
(A more general review of surface reconstruction techniques can be
found, for example, in the recent survey of Berger et al. [BTS∗17].)

2.1. Implicit Surface Reconstruction

Implicit surface reconstruction approaches can be broadly decom-
posed into local and global techniques.

Local Methods Local methods proceed by fitting a compactly
supported implicit function to the point samples and then blend-
ing the local implicit functions into a single solution. Most of-
ten, these approaches locally fit a signed distance function to the
data using the points’ normals to define a linear [HDD∗92] or
higher-order [FG14] function, using line-of-sight information from
the scanner [CL96], or using local polynomial fitting [ABCO∗01,
OBA∗03, SOS04].

These methods tend to have the advantage of being remarkably
fast and often support discretizations over adapted data-structures.
However, in only using local information to define the reconstruc-
tion, these methods can be more sensitive to outliers, noise, and
missing data.

Global Methods In contrast, global techniques tend to provide
more robustness by using all of the input data to define the value
of the implicit function at a given point. This can be done either by
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using a simple pointwise evaluation but using globally supported
functions [JKSH13, LSSW18] or by choosing a function basis and
representing the implicit function as a solution to a global linear
system with respect to this basis [CBC∗01,KBH06,MPS08,CT11,
KH13, KH19].

Because naïvely computing the implicit functions can result in a
reconstruction algorithm that is too slow to be useful, many global
methods leverage a hierarchical structure such as the fast multipole
method [EMRV92] or multigrid [BHM00] to obtain a solution effi-
ciently and with a low memory footprint.

3. Our Approach

Given an oriented point-set P = {(pi,ni)} and an enveloping sur-
face E , our goal is to reconstruct a surface S that fits the point-set
while satisfying the constraint that S is strictly inside E . We do this
by adapting the Screened Poisson Reconstruction algorithm.

Reviewing Screened Poisson Reconstruction

Given the oriented point-set P , Screened Poisson Reconstruction
uses P to define an indicator function χ : R3→ R (i.e., with value
zero outside the surface and value one inside), and then extracts the
reconstructed surface as the level-set S = χ

−1( 1
2 ).

The indicator function is obtained by first transforming the ori-
ented point-set into a compactly supported vector field ~V and then
solving for the function χ whose gradient matches ~V and whose
value at the input samples is close to 0.5. That is, the function χ

minimizes the energy:

E(χ) =
∫ ∥∥∥~V (p)−∇χ(p)

∥∥∥2
d p + α ∑

p∈P
(χ(p)−0.5)2 ,

with α the screening weight.

This system is solved by adapting an octree O to the point-set
and using B-splines {Bo}o∈O centered at the octree nodes/corners
to discretize the space of functions. Finding the minimizer χ then
reduces to solving a sparse, symmetric, positive-definite linear sys-
tem on the coefficients of the B-splines, which is achieved effi-
ciently using a multigrid solver defined over the hierarchical struc-
ture of the octree.

Adapting Screened Poisson Reconstruction

Noting that, by construction, points at which χ is equal to zero are
exterior to the surface, we adapt the Screened Poisson Reconstruc-
tion to support the constraint that the reconstructed surface S is
inside the envelope E by enforcing the Dirichlet constraint that χ

vanishes outside the envelope. We do this by redefining the space
of functions {Bo} to consist of functions whose support is wholly
contained within the interior of E .

4. Implementation

Implementing Screened Poisson Reconstruction with Dirichlet
constraints requires addressing two challenges. We need to identify
the leaf nodes of the octree that are wholly exterior to the envelope

and we need to adapt the finite-elements discretization so that the
basis functions are not supported on the exterior leaf nodes. We be-
gin by describing how the finite-elements discretization is adapted
and then describe how to identify the exterior leaf nodes.

4.1. Adapting the finite-elements discretization

Assume that we have identified the exterior leaf nodes. To enforce
Dirichlet boundary constraints, we require that the supports of the
B-splines, {Bo}, do not overlap the cube cells of leaf nodes desig-
nated exterior. This can be done in one of two ways. The simplest
approach is simply to remove every basis function Bo whose sup-
port overlaps an exterior leaf node. Alternatively, basis functions
can be “reshaped” so their support no longer overlaps the exterior
nodes [HRW01].

In our implementation we use a hybrid approach. Starting with
an octree adapted to the points’ sampling density, we fully refine
the octree up to depth dC. We reshape the finite elements within the
coarse levels of the tree (at depths less than dC). And, within the
fine levels of the tree (at depth dC or greater), we remove exterior-
overlapping finite elements.

Finer discretization

For the adaptive grid at depth dC or finer, we remove all basis func-
tions whose support overlaps an exterior node, allowing us to use a
simple Laplacian stencil to define the linear system at finer depths.

Coarser discretization

For the regular grid at depths coarser than dC, we implicitly “re-
shape” the basis functions by recursively defining coarser basis
functions as linear combinations of finer basis functions whose sup-
port does not overlap the exterior leaf nodes.

We recall that on a regular grid discretized with B-splines, the
Galerkin method relates the coarser (AC) and finer (AF ) linear sys-
tems by:

AC = P> ·AF ·P,

where P is the prolongation operator expressing coarser B-splines
as a linear combination of finer ones.

Although we remove basis functions supported on exterior nodes
at depth dC, we can still use the Galerkin method to obtain a system
at depth dC−1 by zeroing out rows in the prolongation matrix cor-
responding to the removed B-splines at depth dC. At coarser levels,
basis functions are no longer removed so we can directly apply the
Galerkin method.

Figure 3 visualizes the effects of the choice of basis by consider-
ing a 1D problem where we would like to reconstruct the indicator
function of an interval from the positions and orientations of its two
endpoints. For this problem, we use a fully refined tree of depth 5,
first order B-splines as our finite elements, and a constraint enve-
lope which is a dilation of the interval by a factor of 1%.

Figure 3 (left) shows the five finite element functions at depth 2.
Without envelope constraints (top), we have the standard hat basis
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Figure 3: Comparison of different 1D B-spline finite elements, B0,B1, . . . ,B4, at depth d = 2 (left) and solutions at progressively finer
depths d (right) without envelope constraints (top), with envelope constraints but without reshaping (middle), and with envelope constraints
and reshaping (bottom). The two endpoints of the 1D envelope interval are denoted by the dotted lines.

functions. Introducing envelope constraints but no reshaping (mid-
dle), we either have the original hat basis functions (if they are sup-
ported inside the envelope) or the zero function. Using envelope
constraints and reshaping (bottom), the finite element functions re-
semble a continuous truncation of the hat basis functions to the
interior of the envelope.

Figure 3 (right) shows the approximate solutions obtained after
solving (in a coarse-to-fine manner) up to depths 1, 2, 3, 4, and
5, using four Gauss-Seidel relaxations per level. Without envelope
constraints (top), we obtain a progressively sharper approximation
of the indicator function, though the reconstructed function is non-
zero (slightly negative) outside the envelope. With envelope con-
straints but without reshaping (middle), we obtain a function that
is guaranteed to be zero exterior to the envelope. However, the so-
lution obtained at coarser resolutions is a dampened version of the
true solution, resulting in an undesirable dip in the values of the
finer solution near the middle of the interval. With envelope con-
straints and reshaping (right), we obtain solutions similar to those
obtained without envelope constraints but now constrained to be
zero outside the envelope.

4.2. Identifying exterior leaf nodes

Given the envelope E we identify exterior leaf nodes by rasterizing
the envelope into the octree, flood-filling an exterior node designa-
tion, and then eroding the designation to ensure that the vector field
~V is supported away from exterior nodes.

Rasterization of envelope

Given the triangle mesh E and a target rasterization depth dE ≥ dC
we rasterize each triangle t ∈ E into the octree by identifying the
set of octree nodes at depth dE that intersect t (refining the octree
as needed to ensure the nodes exist), clipping the triangle to each
of the intersecting nodes, and pushing the clipped triangle fragment
into a vector stored with the node.

We do this efficiently by first identifying the finest depth at which
the three vertices of the triangle are contained within a single node.
Then, we split the triangle by the three axis-aligned planes passing

through the center of the node and recursively pass each triangle
fragment to the appropriate child node for splitting at the next level
of the octree hierarchy. (We implement this in parallel over the dif-
ferent triangles of the envelope using a mutex to protect the vector
of fragments stored with each node.)

Flood-fill of exterior designator

Given the list of fragments stored within each octree node at depth
dE we flood-fill the octree, designating those leaf nodes that are
wholly exterior to the envelope. We do this in three steps.

First, we iterate over all nodes at depth dE which contain frag-
ments. For each such node we use ray-tracing in conjunction with
the fragment normals to designate the center of each face of the
cell as either interior or exterior. To do this, we construct a ray em-
anating from the center of the face and passing through the center
of one of the fragments. We intersect the ray with all triangle frag-
ments inside the cell and compute the first point of intersection. If
the normal of the first intersecting fragment points in the same di-
rection as the ray we designate the center of the face as interior,
otherwise we designate the center of the face exterior. Then, if the
center of the face is exterior and the finest face-adjacent neighbor
(at depth dE or coarser) does not contain triangle fragments, we
mark the neighboring node as exterior and add it to a queue.

Next, we flood-fill the exterior designation by popping an exte-
rior node off of the queue and considering the node’s neighbors.
For each neighbor, we test if (1) it, or its descendents at depth dE ,
is empty of fragments and (2) it has not been designated exterior. If
a neighbor is both empty and un-designated we mark it exterior and
add it to the queue. We repeat this process until the queue is empty.
(Note that if a node does not contain geometry, its faces must either
all be interior or all be exterior. Thus if it is adjacent to a node that
is entirely exterior, it too must be entirely exterior.)

Finally, as the rasterization depth dE need not be the depth of
the octree and since we may insert nodes at depth coarser than dE
into the queue, we push the exterior designators to the leaf nodes.
We do this by iterating over the nodes of the tree in a depth-first
order, identifying nodes marked as exterior, and propagating that
designation to the children when the node is not a leaf.
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Figure 4: Implicit functions obtained in the 1D reconstruction from just two sample points at the endpoints of a segment without using an
envelope to define Dirichlet constraints (a), using an envelope but without eroding the exterior designator to ensure that the target vector
field can be represented (b-f), and using an envelope and eroding (g). The implicit function is discretized over a fully refined binary tree of
depth d = 8 and the images show results solving up to different depths (d̃) and using different numbers of Gauss-Seidel iterations (η).
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Figure 5: Visualization of the reconstructions of a point-set obtained by uniformly sampling five of the six faces of a cube without using an
envelope to define Dirichlet constraints (left), using an envelope but without eroding the exterior designator to ensure that the target vector
field can be represented (middle), and using an envelope and eroding (right).

Limitation We note that our rasterization assumes that the enve-
lope E is represented by an embedded, manifold, triangle mesh.
Furthermore, while we have found that our naïve implementation
works well in practice, numerical imprecision could result in the
assignment of an incorrect label to a face center, which would then
be propagated by the flood-filling.

Alternative designation of exterior nodes Our implementation
of the finite-elements discretization (Section 4.1) involves a gen-
eral functor that takes as input a leaf node and returns a boolean
value indicating if the node is exterior. This allows for flexibility in
representing the envelope. For example, in the case of a set of range
scans with associated camera parameters, the functor can project a
node point into each range image to determine if it lies in front of
a visible surface.

Erosion of exterior

We observe that using an envelope constraint that is too tight, i.e.
too close to the sample points, can remove the finite-elements at
depths dC or greater that are needed to represent the target vector
field ~V . Without these, ~V is effectively cropped and the resulting
implicit function has value less than one in the interior. Because this
effect is more significant at coarser levels of the hierarchy, where
the B-splines supporting ~V have larger support and are more likely
to be cropped, the multigrid solver fails to provide a good approxi-
mate solution at coarser resolutions, leading to poor convergence.

To address this, we erode the exterior designator so that the en-
velope contains the support of ~V . The constraint vector field, ~V is
represented as a linear combination of the B-splines, {Bo}, with a
3D vector associated to each B-spline. For an octree node o ∈ O

at depth d, we determine if the associated vector coefficient is non-
zero. If it is, we identify the octree nodes at depth dC contained in
the support of Bo and remove the exterior designation from these
nodes and all their descendants.

Figure 4 demonstrates the need for eroding in the 1D case where
the input point-set consists of the two endpoints of a line segment.
For these reconstructions we use a fully refined (binary) tree up
to depth d = 8, but only perform the basis function reshaping up to
depth dC = 5. We show results when solving the system up to depth
d̃ using η Gauss-Seidel relaxations per level. (a) Without Dirichlet
constraints and setting d̃ = 8 and η = 10, the implicit function pro-
vides a good approximation to the indicator function, evaluating
to a value slightly less than zero outside the segment and a value
close to one in the interior. (b) Using Dirichlet constraints and not
eroding the exterior designator, with d̃ = 5 and η = 10, the im-
plicit function is piecewise constant and vanishes outside the enve-
lope. However, the cropping of ~V at coarser resolutions dampens
the function so that it evaluates to a value close to one half in the
interior. (c) Again, using Dirichlet constraints and not eroding, but
now setting d̃ = 7 and η = 104, the vector field ~V remains cropped
and the implicit function, though sharpened at the endpoints, con-
tinues to evaluate to a value close to one half in the interior. (d-f)
Using Dirichlet constraints and not eroding the exterior designator,
this time with d̃ = 8 and increasing numbers of Gauss-Seidel itera-
tions, ~V is well-represented at the finest depth. Combined with the
use of a fully refined tree, the result eventually converges to a func-
tion resembling the indicator function. However, this takes many
iterations as the solution from depth 7 does not provide a good
approximation to the indicator function. (g) Using Dirichlet con-
straints and eroding the exterior designator, ~V is well-represented
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at all depths and the multigrid solver quickly converges to a good
solution.

Figure 5 shows a more challenging 3D case where the point-set is
obtained by uniformly sampling five of the six faces of a cube. The
system is discretized over an adapted octree of depth d = 9 which
is fully refined up to depth dC = 5. (The solutions are obtained by
solving up to the finest depth and using eight Gauss-Seidel itera-
tions per level.) In addition to the missing data, this is a more dif-
ficult reconstruction problem because the adaptivity of the octree
implies that if the coarser solve fails to provide a good approxima-
tion to the indicator function, there may not be an opportunity to
correct the solution at finer resolutions.

For this visualization, we computed reconstructions without us-
ing an envelope (left), using a dilation of the original cube by 1% as
an envelope but without eroding the exterior designator, and using
a dilation of the original by 1% followed by an erosion of the ex-
terior designator. Each of the results shows a 2D slice through the
3D implicit function as well as the level set S = χ

(
1
2

)
. Pixels in

the slice are colored by clamping the values to the range [−0.1,1.1]
and using gray scale. Pixels in regions marked exterior are drawn
in red. (Note that the slice is aligned so that the bottom intersects
the unsampled face of the cube. This results in an indentation of
the Dirichlet region in the rightmost image – since the target vec-
tor field ~V vanishes near the bottom, there is no erosion of exterior
designators.)

As the figure shows, without an envelope we obtain a reconstruc-
tion that balloons out in regions of missing data. Incorporating the
dilated cube as an envelope but not eroding the exterior designa-
tor causes much of the target vector field ~V to fall into the exterior
region and hence be discarded. The resulting surface is guaranteed
not to extend into the region marked exterior but the implicit func-
tion only attains values close to one near the point samples, where
the Laplacian constraint is non-zero and Gauss-Seidel relaxation
at the finer depths corrects the solution. In the interior, where the
coarse solution is too small due to the cropping of the target vec-
tor field and Gauss-Seidel relaxation cannot correct the solution
(because the number of Gauss-Seidel relaxations is small and the
adapted octree is not refined in the interior) the implicit function
has values close to one half. Using the envelope and eroding we
obtain an implicit function that behaves like a discontinuous indi-
cator function near the five sampled faces and transitions smoothly
(harmonically) from zero to one across the missing face.

Erosion extent In eroding the exterior, our goal is to preserve the
basis functions required to represent the constraint vector field ~V
at coarser depths. In principal, this would require ensuring that any
B-Spline at depth dC or finer whose support overlaps the support
of ~V is not removed (since the system constraints are obtained by
integrating ~V against the gradients of the B-splines). In practice
however, we find that it is sufficient to ensure that nodes at depth
dC overlapping the support of ~V (and their descendants) are not
marked exterior.

The full implementation of Dirichlet constraints within the
screened Poisson reconstruction framework can be found at:
https://github.com/mkazhdan/PoissonRecon/.

5. Results and Discussion

We begin by providing a motivation for the design decisions and
parameter choices made in incorporating the envelope constraints
within the Screened Poisson Reconstruction Algorithm. To support
ground-truth comparisons, we use data obtained by virtually scan-
ning 3D meshes. We also consider the real-world application of our
approach by using the BigBIRD dataset [SSN∗14]. We conclude
this section by discussing a difficulty that arises when the envelope
is too tight.

5.1. Motivation

In adapting the Screened Poisson Reconstruction algorithm to sup-
port envelope constraints, we have made general design decisions
as well as particular parameter choices. We begin by motivating
these.

Incorporating the envelope information While we have shown
that it is possible to realize the envelope constraints as a Dirichlet
boundary condition, it is natural to consider whether there are not
easier ways of using the envelope. For example, one could run the
unconstrained reconstruction algorithm and then either (1) trim the
output surface to the envelope, or (2) clamp the implicit function so
that voxels outside the envelope are set to zero before isosurfacing.
(The latter is similar to Cone Carving [SSZCO10] which first solves
for an approximate signed distance function and then merges the
approximation with the distance function to the surface defined by
the union of visibility cones.)

No Hull Hull Trimmed 
Surface

Hull Trimmed 
Implicit

Dirichlet
Envelope

RMS = 9.7 × 10−3 RMS = 7.7 × 10−3 RMS = 1.1 × 10−2 RMS = 4.2 × 10−3

Figure 6: Reconstruction of the stool without using the hull in-
formation, using the hull information to trim the reconstructed sur-
face, using the hull information to clamp the implicit function, and
using the hull information to prescribe envelope constraints.

Figure 6 compares these alternatives for the stool, virtually
scanned from three different positions. The unconstrained recon-
struction (first column) exhibits the usual “ballooning” in regions
of missing data. Trimming to the envelope (second column) and
clamping the values of the implicit function outside the envelope
to zero (third column) both suffer from the fact that the envelope is
not guaranteed to lie close to the surface. Furthermore, trimming
produces surfaces with boundaries while clamping causes sharp
discontinuities revealing the underlying octree discretization. Our
approach, which incorporates the envelope as a Dirichlet constraint
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(fourth column) faithfully reproduces the surface in sampled re-
gions and closes off the surface in regions of missing data without
introducing unwanted “ballooning”.

Choosing regular-grid and rasterization depths Choosing a
regular-grid depth, dC, requires trading-off between accuracy and
performance. On the one hand, making the octree regular up to a
finer depth results in less erosion of the envelope. This results in
tighter constraints on the reconstruction and enables the use of en-
velope constraints with finer features. On the other hand, increasing
dC also means that the solver needs to store and solve a system on
the order of O(2dC × 2dC × 2dC )+O(2d × 2d), with d the depth of
the tree. In contrast, using a fully adapted octree would give mem-
ory usage and run-times on the order of O(2d×2d).

In principle, choosing a finer rasterization depth, dE , would let
us more accurately represent the constraint envelope. However, the
erosion of the exterior designators required for representing the tar-
get vector field effectively removes the finer details of the envelope
(particularly in regions where the envelope is close to the point
samples) resulting in only negligible improvement with increased
rasterization depth.

Figure 7 reconstructions of the hexi_pot model [ZJ16], with
a point-set and depth hull obtained by virtually scanning the model
from eight (regularly sampled) positions on the view sphere. The
figure shows the reconstruction results as the regular-grid depth and
rasterization depth are increased. As the figure shows, using values
of dC and dE that are too low results in significant erosion of the
envelope, allowing the reconstruction to balloon into regions which
the original envelope had identified as exterior. Increasing the val-
ues of dC and dE mitigates this problem, reducing the erosion and
forcing the reconstruction to be more tightly constrained.

Table 1 shows the performance overhead for reconstructing the
hexi_pot using the envelope constraints, as the regular-grid
depth and rasterization depth are increased. (Without envelope con-
straints, the surface is reconstructed in 143 seconds using 3740
megabytes of RAM.)

For smaller values of regular-grid depth (dC ≤ 6), the compu-
tation does not bottleneck on the generation and solution of the
regular-grid system. Specifically, there is an overhead in terms
of both time (∼ 10%) and memory (∼ 5%), but that overhead is
roughly constant. However, as the depth of the regular grid is in-
creased (dC ≥ 7), the complexity of defining and solving a regular
system starts to dominate, resulting in significant increases in both
running times and memory usage.

Increasing the rasterization depth, dE , we see a small increase in
running time. (This is due to the added cost of managing mutual
exclusion when rasterizing into an adapted octree.) We also see an
increase in memory usage, particularly at finer rasterization depths.
(This is because at finer depths, triangles are larger than the tree
nodes, requiring more clipping, thereby increasing the number of
geometry fragments generated.)

Quantitative evaluation Reconstructing surfaces from virtual
scans let us use the ground-truth original surface to quantitatively
evaluate the benefit of incorporating the depth hull as a Dirich-
let constraint. To this end, we use the Metro tool [CS98] to com-
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Figure 7: Comparison of the reconstructions obtained using a
Dirichlet envelope with increasing rasterization depth, dE , and in-
creasing regular-grid depth, dC.

pute the symmetric root mean squared (RMS) distance between the
ground truth and the reconstructed model. We provide the RMS
values, normalized to the size of the bounding box of the model,
for the skeleton (Figures 1 and 2; input data generated using 12
virtual scans), stool (Figure 6; input data generated using 3 vir-
tual scans), and hexi_pot models (Table 2; input data generated
using 8 virtual scans).

As the RMS values demonstrate, incorporating the depth hull
as a Dirichlet constraint produces higher quality reconstructions,
compared to the original Screened Poisson Reconstruction and the
alternatives of either trimming the surface or clamping the implicit
function. Examining the hexi_potmodel, we also find that while
the quality of the reconstruction initially improves as the rasteriza-
tion depth (dE ) is increased, the improvements become less signifi-
cant by depth dC = dE = 6. In fact, the table shows that the quality
degrades somewhat when the regular-grid depth and rasterization
depth become very high. (See Section 5.3 for a discussion of this
phenomenon.)

5.2. Real-world data

We evaluate our approach on models from the BIGBird
dataset [SSN∗14]. Each model in the dataset was obtained by plac-
ing an object on a turntable at 120 different poses and imaging from
five RGB-D camera pairs. (The RGB and depth cameras imaged
the scene at resolutions 1280× 1024 and 640× 480 respectively).
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dE = 4 dE = 5 dE = 6 dE = 7 dE = 8
dC = 4 + 13(s) + 139(MB) + 15(s) + 140(MB) + 17(s) + 141(MB) + 21(s) + 148(MB) + 33(s) + 226(MB)
dC = 5 + 12(s) + 140(MB) + 16(s) + 139(MB) + 20(s) + 146(MB) + 31(s) + 265(MB)
dC = 6 + 13(s) + 140(MB) + 19(s) + 152(MB) + 31(s) + 337(MB)
dC = 7 + 20(s) + 201(MB) + 35(s) + 588(MB)
dC = 8 + 72(s) + 2513(MB)

Table 1: Performance overhead for imposing Dirichlet envelope constraints when reconstructing the hexi_pot model. The table gives the
increase in running time and memory usage when reconstructing the surface at depth d = 10 using the Dirichlet envelope constraints with
different regular-grid depths, dC and different rasterization depths dE . The input consists of a point-set with 1.3× 107 samples and a depth
hull with 1.6×106 triangles. Without the envelope constraints, the surface is reconstructed in 143 seconds, using 3740 megabytes of RAM.

dE = 4 dE = 5 dE = 6 dE = 7 dE = 8
dC = 4 8.1×10−3 3.4×10−3 2.6×10−3 2.4×10−3 2.4×10−3

dC = 5 3.1×10−3 2.1×10−3 2.0×10−3 2.0×10−3

dC = 6 2.0×10−3 2.0×10−3 2.2×10−3

dC = 7 2.0×10−3 2.2×10−3

dC = 8 2.3×10−3

Table 2: Reconstruction quality as a function of the regular-grid depth dC and rasterization depth dE .

Background-foreground segmentation was also performed on the
RGB images, resulting in a binary mask for each RGB image.

As input to our reconstruction algorithm, we computed the input
point-set using the depth images. We assigned a normal by find-
ing the best-fit plane to the depth samples within an eight pixel
radius and chose the sign so that the normal was front-facing to
the camera. We assigned colors to the points from a depth image
by back-projecting and sampling the corresponding RGB image.
Points were discarded if they did not back-project into an occupied
pixel in the segmentation mask.

We computed the depth hull using the depth images and segmen-
tation mask. To do this conservatively, we dilated the segmentation
masks and depth images. This ensured that the derived depth hull
encompassed the point-set without fitting too tightly and allowed
for some imprecision in the depth measurements, the segmentation,
and the estimated camera parameters. We dilated the segmentation
masks using a radius of eight pixels. For the depth images, we re-
placed the depth value at a pixel with the minimum depth value
within an eight pixel radius. Then, we computed the depth hull by
back-projecting each voxel in a 256× 256× 256 grid into each of
the camera pairs and counting the number of camera pairs for which
the voxel (1) back-projected to an RGB pixel that was interior to the
segmentation mask and (2) had a depth value at least 0.99 times the
value of the back-projected depth pixel. Finally, we used marching
cubes [LC87] to extract the level-set corresponding to the voxels
considered to be exterior by at least 10% of the camera pairs.

Figure 8 compares the results of Screened Poisson Reconstruc-
tion at depth 10 with Neumann boundary constraints on the surface
of the bounding cube, Dirichlet boundary constraints on the sur-
face of the bounding cube, and Dirichlet constraints on the depth
hull envelope, for the detergent, mahatma_rice, and pa-
per_cup_holder models in the dataset.

As the models were placed on a turntable, the bottoms were inac-
cessible to the scanner, resulting in missing samples. Using tradi-
tional Screened Poisson Reconstruction generates a “bulging” re-
construction in these regions. While Dirichlet constraints on the

w/ Neumann cube w/ Dirichlet cube w/ Dirichlet envelope

Screened Poisson ReconstructionDepth Hull

Figure 8: Comparison of Screened Poisson Reconstructions with
different boundary conditions including Neumann constraints on
the boundary of the bounding cube, Dirichlet constraints on the
boundary of the bounding cube, and Dirichlet constraints on the
depth hull envelope.

surface of the bounding cube guarantee that the reconstruction will
close off in the interior of the cube, there is little control over where
the closing will happen. The situation is worse with Neumann con-
straints on the surface of the bounding cube because the recon-
structed surface is not even guaranteed to close off in the interior of
the bounding cube. In contrast, by imposing Dirichlet constraints
on the exterior of the depth hull, we constrain the reconstruction to
close the surface within a region known to contain the correct solu-
tion. We note that in regions that are well-sampled, the reconstruc-
tion with Dirichlet constraints on the exterior of the depth hull is
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indistinguishable from the reconstruction without, confirming that
the introduction of Dirichlet constraints is compatible with the orig-
inal Poisson Reconstruction.

5.3. Limitation of a Tight Envelope

Our approach provides a way to force the reconstructed surface
to stay within a constraint envelope. However, as Figure 5 (right)
shows, this can come at the cost of having the reconstructed surface
recede from the true solution. One way to understand this behavior
is from the perspective of solving Laplace’s equation.

In the case of the cube where only five of the six faces are sam-
pled, we can think of the solution in the interior of the cube as
approximating the harmonic function that is equal to one on the
five sampled faces and zero on the unsampled one. The function is
softly constrained to be equal to one at the five faces through the in-
terpolation constraints and the target vector field~V . It is constrained
to equal zero near the other face through the Dirichlet constraints.
And, the solution is harmonic because the target vector field is zero
in the interior of the cube. As a result, the implicit function transi-
tions smoothly from zero to one near the unsampled face, making
the 0.5 isosurface smooth and concave in this region.

The recession of the surface may be mitigated by dilating the
constraint envelope, thereby pushing the isosurface further out. In
our implementation, this can be done simply by using a lower ras-
terization depth, dE , since our approach only marks nodes as exte-
rior if they do not contain any geometry. However, the choice of a
good dilation radius is likely to be problem-specific and we do not
have a good general solution at this time.

The effects of dilating the envelope are also evidenced in Ta-
ble 2. Initially, we see the expected improvement in reconstruction
quality as the rasterization depth is increased, since this generates
more accurate Dirichlet constraints. However, the RMS error starts
to increase again when using a fine rasterization depth of dE = 8.

6. Conclusion and Future Work

This work presents a new approach for incorporating spatial oc-
cupancy information like line-of-sight and visual hull to constrain
the result of surface reconstruction. In the context of the Screened
Poisson Reconstruction algorithm, which solves the reconstruction
problem by computing the indicator function, we show that enve-
lope constraints can be expressed as Dirichlet boundary constraints.
By adapting the Screened Poisson Reconstruction algorithm to
support these types of envelope constraints, we obtain noticeably
improved reconstructions at negligible costs in running time and
memory usage.

In supporting Dirichlet envelope constraints, we have designed
an implementation that either excludes finite elements if their sup-
port overlaps the constraint region (at finer resolutions), or reshapes
the finite elements (at coarser resolutions where the octree is fully
regular). In the future, we would like to explore whether there is a
hybrid approach that allows for reshaping the finite-elements with-
out requiring a fully regular grid, allowing us to maintain a run-time
complexity that is quadratic in the resolution instead of cubic, while

still supporting a finite-elements discretization that better adapts to
the constraint region.

In addition to surface reconstruction, the efficient solution of the
Poisson equation has applications in a number of other domains.
With the ability to support Dirichlet boundary conditions, we would
like to explore applications in the simulation of incompressible flu-
ids where the no-slip condition at fluid-solid interfaces is realized
using Dirichlet constraints.

Acknowledgements

We thank the anonymous reviewers for their valuable comments
and suggestions, and Thingi10K, Aim@Shape, and BIGBird for
sharing data. This work was sponsored in part by NSF Awards
1422325, 1617236, and 1815070.

References
[ABCO∗01] ALEXA M., BEHR J., COHEN-OR D., FLEISHMAN S.,

LEVIN D., SILVA C. T.: Point set surfaces. In Proceedings of the Con-
ference on Visualization ’01 (2001), p. 21–28. 2

[ABK98] AMENTA N., BERN M., KAMVYSSELIS M.: A new Voronoi-
based surface reconstruction algorithm. In Proceedings of the 25th
Annual Conference on Computer Graphics and Interactive Techniques
(1998), pp. 415—-421. 2

[ACCS04] AHN H.-K., CHENG S.-W., CHEONG O., SNOEYINK J.: The
reflex-free hull. International Journal of Computational Geometry &
Applications 14, 06 (2004), 453–474. 2

[ACK01] AMENTA N., CHOI S., KOLLURI R. K.: The power crust,
unions of balls, and the medial axis transform. Comput. Geom. Theory
Appl. 19, 2–3 (2001), 127—-153. 2

[BBX95] BAJAJ C. L., BERNARDINI F., XU G.: Automatic reconstruc-
tion of surfaces and scalar fields from 3D scans. In Proceedings of the
22nd Annual Conference on Computer Graphics and Interactive Tech-
niques (1995), pp. 109—-118. 2

[BGM06] BOGOMJAKOV A., GOTSMANN C., MAGNOR M.: Free-
viewpoint video from depth cameras. In Proceedings of the Vision, Mod-
eling and Visualization Workshop (VMV) (2006), pp. 89–96. 2

[BHM00] BRIGGS W. L., HENSON V. E., MCCORMICK S. F.: A Multi-
grid Tutorial (2nd Ed.). Society for Industrial and Applied Mathematics,
USA, 2000. 3

[BMR∗99] BERNARDINI F., MITTLEMAN J., RUSHMEIER H., SILVA
C., TAUBIN G.: The ball-pivoting algorithm for surface reconstruction.
IEEE Tran. Vis. Comp. Graph. 5, 4 (1999), 349–359. 2

[Boi84] BOISSONNAT J.-D.: Geometric structures for three-dimensional
shape representation. ACM Trans. Graph. 3, 4 (1984), 266––286. 2

[BTS∗17] BERGER M., TAGLIASACCHI A., SEVERSKY L. M., ALLIEZ
P., GUENNEBAUD G., LEVINE J. A., SHARF A., SILVA C. T.: A survey
of surface reconstruction from point clouds. Computer Graphics Forum
(2017), 301–329. 2

[CBC∗01] CARR J. C., BEATSON R. K., CHERRIE J. B., MITCHELL
T. J., FRIGHT W. R., MCCALLUM B. C., EVANS T. R.: Reconstruc-
tion and representation of 3D objects with radial basis functions. In Pro-
ceedings of the 28th Annual Conference on Computer Graphics and In-
teractive Techniques (2001), p. 67–76. 3

[CL96] CURLESS B., LEVOY M.: A volumetric method for building
complex models from range images. In Proceedings of the 23rd Annual
Conference on Computer Graphics and Interactive Techniques (1996),
pp. 303–312. 2

[CM95] CHEN Y., MEDIONI G.: Description of complex objects from
multiple range images using an inflating balloon model. Computer Vision
and Image Understanding 61, 3 (1995), 325–334. 2

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



M. Kazhdan, M. Chuang, S. Rusinkiewicz, & H. Hoppe / Poisson Surface Reconstruction with Envelope Constraints

[CS98] CIGNONI P., SCOPIGNO R.: Metro: Measuring error on simpli-
fied surfaces. Computer Graphics Forum 17, 2 (1998). 7

[CT11] CALAKLI F., TAUBIN G.: SSD: Smooth signed distance surface
reconstruction. Computer Graphics Forum 30, 7 (2011), 1993–2002.

[EM94] EDELSBRUNNER H., MÜCKE E. P.: Three-dimensional alpha
shapes. ACM Trans. Graph. 13, 1 (1994), 43—-72. 2

[EMRV92] ENGHETA N., MURPHY W., ROKHLIN V., VASSILOU M.:
The fast multipole method for electromagnetic scattering computation.
IEEE Transactions on Antennas and Propagation 40 (1992), 634–641. 3

[FG14] FUHRMANN S., GOESELE M.: Floating scale surface reconstruc-
tion. ACM Trans. Graph. 33, 4 (2014), 46:1–46:11. 2

[HDD∗92] HOPPE H., DEROSE T., DUCHAMP T., MCDONALD J.,
STUETZLE W.: Surface reconstruction from unorganized points. SIG-
GRAPH Comput. Graph. 26, 2 (1992), 71–78. 2

[HRW01] HÖLLIG K., REIF U., WIPPER J.: Weighted extended B-
spline approximation of Dirichlet problems. SIAM J. Numer. Anal. 39, 2
(2001), 442–462. 3

[JKSH13] JACOBSON A., KAVAN L., SORKINE-HORNUNG O.: Robust
inside-outside segmentation using generalized winding numbers. ACM
Trans. Graph. 32, 4 (2013). 3

[Kaz13] KAZHDAN M.: Screened Poisson surface reconstruction.
https://github.com/mkazhdan/PoissonRecon, 2013. 2

[KBH06] KAZHDAN M., BOLITHO M., HOPPE H.: Poisson surface re-
construction. In Proceedings of the Fourth Eurographics Symposium on
Geometry Processing (2006), p. 61–70. 3

[KH13] KAZHDAN M., HOPPE H.: Screened Poisson surface reconstruc-
tion. ACM Trans. Graph. 32 (2013), 29:1–29:13. 2, 3

[KH19] KAZHDAN M., HOPPE H.: An adaptive multigrid solver for ap-
plications in computer graphics. Computer Graphics Forum 38, 1 (2019),
138–150. 2, 3

[KSO04] KOLLURI R., SHEWCHUK J. R., O’BRIEN J. F.: Spectral
surface reconstruction from noisy point clouds. In Proceedings of the
2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Process-
ing (2004), pp. 11—-21. 2

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A high reso-
lution 3D surface construction algorithm. SIGGRAPH Comput. Graph.
21, 4 (1987), 163–169. 8

[LSSW18] LU W., SHI Z., SUN J., WANG B.: Surface reconstruction
based on the modified Gauss formula. ACM Trans. Graph. 38, 1 (2018).
3

[MPS08] MANSON J., PETROVA G., SCHAEFER S.: Streaming surface
reconstruction using wavelets. In Proceedings of the Symposium on Ge-
ometry Processing (2008), p. 1411–1420. 3

[OBA∗03] OHTAKE Y., BELYAEV A., ALEXA M., TURK G., SEIDEL
H.-P.: Multi-level partition of unity implicits. ACM Trans. Graph. 22, 3
(2003), 463–470. 2

[SOS04] SHEN C., O’BRIEN J. F., SHEWCHUK J. R.: Interpolating
and approximating implicit surfaces from polygon soup. In ACM SIG-
GRAPH 2004 Papers (2004), p. 896–904. 2

[SSN∗14] SINGH A., SHA J., NARAYAN K., ACHIM T., ABBEEL P.:
Bigbird: A large-scale 3D database of object instances. In IEEE Interna-
tional Conference on Robotics and Automation (2014), pp. 509–516. 6,
7

[SSZCO10] SHALOM S., SHAMIR A., ZHANG H., COHEN-OR D.:
Cone carving for surface reconstruction. ACM Trans. Graph. 29 (2010),
150:1–150:10. 2, 6

[TV91] TERZOPOULOS D., VASILESCU M.: Sampling and reconstruc-
tion with adaptive meshes. In Proceedings. 1991 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (1991), pp. 70–
75. 2

[ZJ16] ZHOU Q., JACOBSON A.: Thingi10K: A dataset of 10,000 3D-
printing models. arXiv preprint arXiv:1605.04797 (2016). 7

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

https://github.com/mkazhdan/PoissonRecon

