
Efficient Traversal of Mesh Edges using Adjacency Primitives
Pedro V. Sander Diego Nehab Eden Chlamtac Hugues Hoppe
Hong Kong UST Microsoft Research Princeton University Microsoft Research

(a) (b) (c) (d)

Figure 1: (a) Our goal is to enable efficient processing of edges in a triangle mesh using adjacency primitives. (b) We select a minimal subset
of triangles (blue) that covers all mesh edges. (c) Each remaining triangle (white) is assigned to a cover triangle (indicated by red segments).
(d) We encode each triangle pair as a triangle-with-adjacency primitive, and order these primitives for vertex cache locality (cache hits in
green, misses in red). This new representation reduces storage, bandwidth, and GPU computation, resulting in substantial gains for a variety
of edge-processing techniques.

Abstract
Processing of mesh edges lies at the core of many advanced real-
time rendering techniques, ranging from shadow and silhouette
computations, to motion blur and fur rendering. We present a
scheme for efficient traversal of mesh edges that builds on the adja-
cency primitives and programmable geometry shaders introduced
in recent graphics hardware. Our scheme aims to minimize the
number of primitives while maximizing SIMD parallelism. These
objectives reduce to a set of discrete optimization problems on the
dual graph of the mesh, and we develop practical solutions to these
graph problems. In addition, we extend two existing vertex cache
optimization algorithms to produce cache-efficient traversal order-
ings for adjacency primitives. We demonstrate significant runtime
speedups for several practical real-time rendering algorithms.

Keywords: real-time rendering, silhouettes, shadow volumes, ver-
tex locality, programmable geometry shader.

1 Introduction
Triangles are a widespread rasterization primitive, so there is a large
body of work on optimizing the traversal of triangle meshes for ef-
ficient rendering, e.g. using triangle strips [Evans et al. 1996; Xiang
et al. 1999; Estkowski et al. 2002], managed vertex buffers [Deering
1995; Chow 1997], and indexed strips with vertex caching [Hoppe
1999; Lin and Yu 2006; Sander et al. 2007; Chhugani and Kumar
2007]. In particular, current GPUs include a vertex cache to al-

(a) (b) (c)

Figure 2: (a) Our mesh traversal primitive is the triangle-with-
adjacency, which we use to process up to 3 edges and 2 faces. (b) It
provides an optimal cover in regular mesh regions. (c) On the other
hand, around any odd-degree vertex, at least one adjacent edge must
be covered twice.

low reuse of post-shaded vertices among several adjacent triangles,
thereby achieving significant reduction in both memory bandwidth
and vertex shader computation.

Many advanced rendering techniques process not only mesh
faces but also mesh edges. Applications include shadow volumes
[Crow 1977], silhouette rendering [Hertzmann 1999; Gooch and
Gooch 2001], motion blur [Wloka and Zeleznik 1996], fur render-
ing [Lengyel et al. 2001], and wireframe rendering. In most tech-
niques, processing an edge requires access to its two adjacent faces.
This has motivated the introduction of adjacency primitives in the
latest graphics systems [Blythe 2006]. The primitives are processed
in a new programmable unit of the graphics pipeline, the geometry
shader, which reads a primitive, performs computation, and emits
a variable number of new primitives.

In this paper, we present a general scheme that optimizes the
traversal of a mesh for efficient GPU processing of its edges. To our
knowledge, this is the first attempt at such an optimization. Some
graphics applications require traversal of triangles in addition to
edges, and we explore how this can be achieved efficiently in the
same traversal pass, or in separate passes using the same vertex and
index buffers.

Approach Our basic strategy is to traverse the mesh using a list
of triangle-with-adjacency primitives. As shown in Figure 2a, each
such primitive uses 6 indices to encode a central cover face as well
as its 3 adjacent faces. In principle, the primitive permits the pro-
cessing of the cover face itself, all its 3 edges, and all its 3 adjacent
faces. Our goal is to process all mesh edges and triangles exactly
once, using the same list of primitives, while keeping the overall
number of primitives to a minimum.

Because the geometry shaders consider many primitives simulta-
neously with SIMD parallelism on the GPU, it is crucial for compu-
tational efficiency that processing each primitive requires the same
sequence of steps. To maximize this SIMD efficiency, we allow
each adjacency primitive to process 1 or 2 faces at a time (Fig-
ure 2a): the central cover face, and an optional adjacent face that
we refer to as the assigned face. To further improve SIMD par-
allelism, we place some restrictions on the selection of assigned
faces, as discussed in Section 5.

Note that, in regular mesh regions, all edges and faces can be
covered by introducing primitives for only half of the triangles, i.e.
all the faces “pointing in the same direction” (Figure 2b), each one
assigned to a face pointing in the opposite direction. On the other
hand, around any irregular vertex of odd degree, at least one edge
must be covered twice, and therefore some redundancy is inevitable
(Figure 2c). Nevertheless, because most triangles-with-adjacency
primitives encode two faces, the index buffer contains only about 3
indices per mesh triangle (one primitive for every 2 mesh triangles,
6 indices per primitive), and therefore has approximately the same
memory cost as the widely used indexed triangle list representation.

Algorithm overview The problems we face can be formulated as
graph theoretical problems on the dual graph induced by the trian-
gle mesh. In particular, we show that selecting a minimum number
of primitives to cover all edges reduces to a minimum vertex cover
problem, and that assigning the remaining faces to these primitives
reduces to two bipartite matching problems. Our algorithm has
three major steps, as shown in Figure 1:

1. The vertex cover problem is NP-complete, but fortunately in
our particular setting we can rely on a fast approximation us-
ing a stochastic algorithm. Moreover, by deriving a good
lower bound on the number of cover faces, we are able to
show that, for practical triangle meshes, the approximate so-
lutions are within a few percent of optimal;

2. The face assignment problem reduces to two bipartite match-
ing problems, and can therefore be solved quickly in O(n1.5)
time; e.g. only 4 sec for a mesh with n = 75,000 vertices. In
particular, we prove the surprising result that perfect match-
ings are guaranteed to exist, even with the added restrictions
introduced for SIMD efficiency;

3. Having determined a set of triangles-with-adjacency, we opti-
mize their ordering to maximize vertex cache reuse.

The cover and assignment problems are always solved in an off-
line preprocess. Because ordering efficiency depends on cache size,
we provide two ordering algorithms: a slower, careful scheme that
assumes prior knowledge of the cache size, and a faster scheme that
can be run at load time based on the specific hardware.

Contributions:
• A construction that minimizes the number of adjacency prim-

itives needed for the processing of mesh edges (Section 4);
• An accurate lower bound algorithm that confirms the quality

of this minimization (Appendix);
• A construction that allows this reduced set of primitives to

process all mesh faces, retaining SIMD efficiency (Section 5);
• The first modified algorithms that perform vertex cache opti-

mization on lists of triangles-with-adjacency (Section 6).

(a) (b)

Figure 3: (a) Primal graph associated to a mesh (black), and its dual
(red). (b) Automatic inclusion of boundary faces into cover.

2 Previous work
Optimizing the traversal of mesh edges on the GPU is a relatively
unexplored area. One prior technique for computing shadow vol-
umes entirely on the GPU is to introduce a degenerate quadrilateral
on each edge of the input mesh, and to selectively translate vertices
to expand a fraction of these degenerate faces to form the sides
of the shadow volume [Brennan 2002]. However, the technique
requires splitting the mesh vertices in a preprocess, resulting in a
mesh that is 6 times as large as the original.

Some related techniques for GPU rendering of silhouettes or
fins also introduce degenerate quadrilaterals on edges [Card and
Mitchell 2002; McGuire and Hughes 2004], and therefore also re-
quire memory buffers with many additional vertices and faces.

Several sample programs demonstrate applications of the new
triangle-with-adjacency primitive [Microsoft Corp 2007; Tariq
2007]. The basic approach in all these programs is to instantiate
a primitive for each input triangle. To avoid processing interior
edges twice, a test is performed in the geometry shader to appro-
priately skip half of the edges. This test is based either on the tri-
angle orientation at silhouettes, or on per-edge ordering of vertex
indices. Note that such local branching leads to inefficient SIMD
processing. In contrast, our scheme generates roughly half as many
primitives, and moreover most of these primitives process all 3 of
their adjacent edges, resulting in excellent SIMD utilization.

3 Notation
We describe our processing pipeline in the next three sections us-
ing the following notation. A triangle mesh M(V, E, T) is defined
by a set of vertices V , edges E, and triangles T . Each triangle is
formed by three vertices {vi, vj , vk} in V , and defines three edges:
{vi, vj}, {vj , vk}, and {vk, vi}. The set E contains all edges de-
fined by the triangles in T .

As shown in Figure 3a, two undirected graphs can be associated
with mesh M . The primal graph G(V, E) has the same vertices V
and edges E. The dual graph G′(V ′, E′), on the other hand, has
one vertex in V ′ for each triangle in T . The edges in E′ connect
two vertices in V ′ if and only if the associated triangles in T share
an edge in E.

4 Covering all edges
Recall that our goal is to create a minimum set of triangle-with-
adjacency primitives that allow the processing of all edges in a
mesh M(V, E, T). This is equivalent to finding the minimum ver-
tex cover C ⊂ V ′ in the dual graph G′(V ′, E′). In general, a set of
vertices B′ ⊂ V ′ may be adjacent to the mesh boundary, and must
therefore be part of the cover. For meshes with boundaries, we find
the minimal vertex cover C∗ on the reduced graph G∗(V ′\B′, E∗)
(i.e., G′ with all boundary vertices removed, as shown in Fig-
ure 3b), and return C = C∗ ∪B′.

Ideally, we would like to find the minimum vertex cover in G∗.
However, the problem is NP-complete [Garey and Johnson 1977],
even for the graphs with maximum degree 3 arising from mani-
fold triangle meshes. Therefore, we look for heuristics that produce

Figure 4: For fast geometry shader evaluation, we allow only 6 con-
figurations of the triangle-with-adjacency primitive. Each primitive
processes the central triangle (blue), a subset of its edges (solid
lines), and an optional matched triangle (white). Repeated vertex
indices identify edges that should not be processed, a missing adja-
cent face, or both.

good minimal covers, in which no vertex can be trivially removed
without leaving an uncovered edge. Note that the cover C is also
minimal, since every v′ ∈ B′ is needed to cover a corresponding
boundary edge, and by minimality of C∗, no v′ ∈ C∗ can be re-
moved without exposing an internal edge in G∗.

Several recent stochastic algorithms address the related problems
of computing approximations to minimal vertex covers, maximum
cliques, or maximum independent sets on large graphs [Grosso
et al. 2007; Andrade et al. 2008]. Although we could use any of
them for our purposes, our implementation is based on the method
of Grosso et al. [2007]. This is an excellent maximum clique ap-
proximation heuristic, which is related to the minimum vertex cover
as follows: C is a minimum vertex cover for graph G′(V ′, E′) if
and only if C = V ′ \ C is a maximum clique on the complement
graph G′(V ′, E′), where E′ is the set of all edges not in E′.

The algorithm of Grosso et al. iterates between two steps: a per-
turbation and a tabu search. Each iteration starts with a maximal
clique K, and ends with a new maximal clique K′. First, the per-
turbation sets K′=K, adds a random vertex v 6∈ K′, and corrects
K′ by removing from it all vertices not adjacent to v. Next, the tabu
search successively grows K′ until it is maximal again, while also
attempting to translate it away from K as long as they share at least
one vertex. At the end of the iteration, K is replaced by K′ if the
cardinality of K′ is larger.

Fortunately, it is possible to apply the stochastic algorithm to
our vertex cover problem without having to explicitly construct the
complement set E′, which would have quadratic complexity. We
first modify the algorithm of Grosso et al. by negating all the edge
tests, to construct a maximal independent set I . Our minimal vertex
cover C is simply the complement I of this intermediate result.

We find that the stochastic algorithm produces excellent minimal
covers C on a wide variety of input graphs produced from triangle
meshes. To quantify the quality of these results, we develop an
efficient algorithm that provides a good lower bound on |C|. To
emphasize that this bound is only used for evaluation purposes, and
is not a necessary part of our processing pipeline, we describe it in
the appendix. Using this lower bound, we determine that the covers
C are typically within 2-3% of optimal (see Table 1). In fact, since
the lower bound is not tight, the covers may be closer to optimal
than suggested by these numbers.

5 Assigning the remaining triangles
Having created a triangle-with-adjacency primitive centered at each
cover face, we assign the uncovered faces to adjacent faces within
these primitives. For efficient SIMD load-balancing, we assign at
most one uncovered face to each primitive. And to simplify the run-
time traversal, we assume that this assigned face is the first adjacent
face {0, 1, 2} within the primitive (see Figure 4). If the primitive
lacks an assigned face, is at the boundary, or if one of its edges
has already been covered by a neighboring primitive, we encode
a degenerate face by duplicating some vertex indices (also shown

in Figure 4). There are two ways to duplicate the index, and we
can use them to distinguish between boundary edges and edges that
have already been covered.

Note, however, that whenever {0, 2} is not a boundary edge and
face {0, 1, 2} is made degenerate, edge {0, 2} also becomes degen-
erate and cannot be processed by the current primitive. Recall that
processing of an edge requires access to both its adjacent triangles,
but in this primitive one of them is degenerate. Therefore, the edge
must be processed by another primitive: the primitive centered on
face {0, 1, 2}, which must be a cover face too.

Thus, if a non-boundary cover face f1 lacks an assigned face, it
must be adjacent to another cover face f2, which if it also lacks an
assigned face and is not on the boundary, must be adjacent to a third
cover face f3, etc. This chain of restrictions is satisfied if every
connected component of cover faces has at least one face that is
either adjacent to the mesh boundary or is matched to an uncovered
face. This constrains the acceptable matchings, but we will prove
that nonetheless it is always possible to find such a perfect restricted
matching.

Formally, given the minimal cover C in the dual graph G′ (in-
cluding all dual vertices corresponding to boundary faces), we must
match each remaining vertex in C = V ′ \ C to a vertex in C. Find-
ing an unrestricted matching from C to C is easy. Let d(v) de-
note the degree of vertex v. If we consider the bipartite graph
G′′ = ({C, C}, E′(C, C)), where E′(C, C) ⊂ E′ is the subset
of edges between C and C, we see that dG′′(v′) = 3 for all v′ ∈ C
(since v′ is not in the cover, all its three neighbors must be), and
dG′′(v′) ≤ 3 for all v′ ∈ C (a triangle has at most three neigh-
bors). It follows that C satisfies the marriage condition, which is
that for any subset C′ ⊆ C and its neighbors ΓG′′(C′) ⊆ C, we
have |ΓG′′(C′)| ≥ |C′|. Thus Hall’s theorem [Hall 1935] guaran-
tees the existence of a matching M from C to C.

To express the conditions on the restricted matching, denote by
{Ci} the partition into connected components of the subgraph of
G′ induced on C. For each Ci we must ensure that at least one of
the following two conditions holds:

1. Some v′ ∈ Ci corresponds to a mesh boundary triangle, or
2. Some v′ ∈ Ci is matched to C, i.e. it has an assigned face.

The proof of the following lemma (illustrated in Figure 5) describes
a construction algorithm for the restricted matching.

Lemma 1. For any bipartite graph G′′ as above, there always ex-
ists a perfect restricted matching M ′ from C to C satisfying the
above requirements.

Proof. As we have seen, there always exists some unrestricted per-
fect matching M from C to C (Figure 5a). We must find a match-
ing M ′ that also covers at least one face in each component Ci that
does not contain a boundary face. Let A ⊂ {Ci} denote this set of
components. Let us collapse for a moment each Ci ∈ A to a single
vertex, and merge repeated edges. Our problem is to find a perfect
matching in this graph from A to C. We again use Hall’s theorem,
which we can apply if the marriage condition is satisfied. That is,
for any subset K ⊂ A of non-boundary components, and its neigh-
bors Γ(K) ⊆ C, we must show that |K| ≤ |Γ(K)|. Indeed, let
E′(K) be the set of dual edges from K to Γ(K) before merging.
Note that each Ci ∈ A must have at least three edges in G′ go-
ing to C (since, by minimality of the cover C, the corresponding
bounded region in the primal is surrounded by faces in C). More-
over, every u′ ∈ C has degree ≤ 3 (originally every u′ ∈ C had
degree 3, though some of its edges might not participate in E′(K)).
Therefore

3|K| ≤ |E′(K)| ≤ 3|Γ(K)|.

Thus, by Hall’s theorem, there exists a matching N from A into C
(Figure 5b).

(a) Matching M (b) Matching N (c) M ∪N (d) Alternating path (e) Final matching M ′

Figure 5: The face assignment corresponds to a restricted matching problem on a bipartite graph (where gray shaded regions denote connected
components). (a) The initial unrestricted perfect matching leaves an isolated covered face (star) unmatched. (e) After several steps, our
construction is guaranteed to find a final perfect matching such that all connected covered faces have at least one matching.

Now consider the union of the two matchings M∪N (Figure 5c).
These form a disjoint collection of cycles and paths (because every
vertex in this graph has degree ≤ 2). Let v′ ∈ C be a vertex par-
ticipating in matching N but not in M (the star in Figure 5). Then
there is a path alternating between C and C which starts at v′ and
ends in a vertex u′ ∈ C which participates in M but not N (Fig-
ure 5d). Let P be the set of edges in all such alternating paths (note
that they are disjoint). Now take M and flip the membership of all
edges in the alternating paths, producing a new perfect matching
M ′ = (M \ P) ∪ (P \M) (Figure 5e).

Clearly, matching M ′ also covers all of C. Let us verify that
every Ci ∈ A participates in this matching. Since A is com-
pletely matched by N , every Ci must contain some vertex v′ that is
matched by N . If it is also matched by M , then it will participate
in M ′ regardless of whether an alternating path going through it is
flipped. Otherwise, it is the initial vertex in an alternating path, and
thus will participate in M ′ once this path is flipped.

To find the bipartite matchings, we use the algorithm by Hopcroft
and Karp [1973], as implemented by Rothberg [1985]. The time
complexity of this algorithm is O(|E′|

√
|V ′|), which is simply

O(n1.5) on the size of the input mesh.

6 Ordering primitives for vertex locality
The idea of reordering primitives for efficient GPU traversal is not
new, but has previously been limited to triangle primitives. Several
methods optimize the traversal of indexed triangles in a mesh to
maximize the runtime efficiency of a GPU vertex cache. We focus
here on the methods that are most related to our approach, and refer
the reader to Chhugani and Kumar [2007] for a more complete sur-
vey. Hoppe [1999] shows the efficacy of a FIFO cache, and builds
successive triangle strips by greedily optimizing their lengths. Lin
and Yu [2006] improve caching efficiency by using triangle fans
and optimizing their selection based on the age of the vertex in the
cache and the number of cache misses that would result. Chhugani
and Kumar [2007] further improve the cache efficiency; their ap-
proach partitions the mesh triangles into adjacent chains, and then
splits the chains into strips using dynamic programming. Sander
et al. [2007] develop a fast algorithm that does not require mesh
adjacency, has linear complexity independent of cache size, and is
therefore suitable for load-time optimization of triangle buffers.

Our contribution is to optimize the traversal of triangle primitives
with adjacency, created as described in the previous two sections.
Because each adjacency primitive involves a larger stencil of up to
6 vertices, naive application of previous reordering methods gives
poor results. (We arbitrarily selected [Lin and Yu 2006] as the rep-
resentative “off-the-shelf” method.)

(a) Careful scheme: 6 primitives (b) Fast scheme: 3 primitives

Figure 6: Each of our reordering algorithms considers a different
set of primitives around a central vertex.

We chose to extend two of the prior methods, namely [Lin and Yu
2006] and [Sander et al. 2007], because their strategy of emitting all
unvisited primitives adjacent to a central vertex can be generalized
to other primitive types. In the results, we denote our extensions of
these two methods as the “careful” and “fast” schemes, respectively.

Careful scheme based on extending [Lin and Yu 2006] The al-
gorithm of Lin and Yu proceeds by iteratively selecting a central
vertex and emitting all its adjacent unvisited faces. The vertex se-
lection algorithm considers the position of the vertex in the cache,
the number of unvisited faces, and the number of cache misses that
would result. We modify this cost analysis to consider the ring of
adjacency primitives that reference the candidate central vertex. In
a regular mesh region, there are 6 such primitives, as shown in Fig-
ure 6a. We also modify the algorithm to emit the adjacent primitives
in the order that minimizes the resulting number of cache misses.

Fast scheme based on extending [Sander et al. 2007] The algo-
rithm of Sander et al. considers fewer candidates for the next central
vertex to process, and makes the conservative assumption that un-
visited adjacent faces may cause two additional cache misses. With
adjacency primitives, this conservative bound must be raised to five
cache misses per primitive. Therefore, to obtain good results, we
found it necessary to emit only the primitives whose cover face is
immediately adjacent to the central vertex; i.e. only up to 3 adja-
cency primitives in a regular mesh region, as shown in Figure 6b.

As this scheme takes only a fraction of a second to run even on
large meshes (Table 1), it can be used to quickly specialize the prim-
itive ordering to the cache size of a given graphics system. Note that
the cover and assignment can still be obtained in a preprocessing
stage, since they are unaffected by cache size.

As future work, it would also be interesting to explore extensions
of [Hoppe 1999] and [Chhugani and Kumar 2007], which are based
on strips.

Table 1: Results of our traversal optimization on several meshes.

Ordering†

Input mesh Cover Assignment Careful Fast

Name # Faces Lower bound (B) Cover (C) C/B Time (s) Time (s) CM/V∗ Gain‡ Time (s) CM/V∗ Gain‡ Time (s)

fandisk 9,926 5,199 (52.3%) 5,335 (53.7%) 1.026 0.62 0.07 1.496 1.955 1.23 1.755 1.666 0.002
gargoyle 20,000 10,880 (54.4%) 11,225 (56.1%) 1.032 1.42 0.22 1.517 1.794 3.12 1.805 1.508 0.006
feline 41,262 21,937 (53.2%) 22,570 (54.7%) 1.029 3.50 0.70 1.529 1.903 6.17 1.816 1.602 0.014
bunny 69,473 36,382 (52.4%) 37,168 (53.5%) 1.022 8.47 0.92 1.535 1.938 9.33 1.780 1.672 0.023
dragon 150,000 81,520 (54.3%) 84,034 (56.0%) 1.031 50.32 4.02 1.505 1.671 21.73 1.807 1.417 0.053
turtle 267,931 142,390 (53.1%) 146,158 (54.6%) 1.026 55.08 5.95 1.533 1.885 36.38 1.792 1.608 0.099
buddha 1,087,716 591,909 (54.4%) 610,526 (56.1%) 1.031 315.38 341.00 1.501 1.677 212.58 1.798 1.400 1.256

†Measurements are based on a cache with 24 entries. ∗CM/V indicates cache misses per mesh vertex and has a lower bound of 1. ‡Gain factors indicate
reduction in cache misses compared to an off-the-shelf method.

(a) Input mesh (b) Cover faces and
assignment

(c) Careful
vertex cache ordering

(d) Fast
vertex cache ordering

(e) Off-the-shelf
vertex cache ordering

Figure 7: Results of our mesh traversal construction on 4 representative meshes from Table 1.

7 Results and applications
Table 1 shows the results of our traversal construction for an as-
sortment of practical meshes. The C/B column represents the ratio
between the cover results (C) and our computed lower bound re-
sults (B). Remarkably, C/B indicate that Grosso et al. [2007] can
find cover solutions that are only 2–3% worse than the lower bound,
and therefore at most 2–3% worse than optimal. In practice, both
the cover and the assignment steps can be performed efficiently (in
seconds for small models, and minutes for large models). Note that
this is a pre-processing algorithm and therefore not time-critical. As
shown later in the applications, the excellent cover and assignment
results translate into significant speedups in practical rendering sce-
narios.

Figure 9 plots the cache efficiency as a function of cache size.
The efficiency, denoted CM/V, is given by the number of cache
misses divided by the number of vertices. Lower values are better,
and the optimal minimum value is 1, given that each vertex must be
processed at least once. Note the substantial reduction in the num-
ber of cache misses per vertex for both our careful and fast schemes
compared to the ordering produced by a representative prior algo-
rithm designed for triangle primitives without adjacency. As shown
in Table 1, the fast scheme is orders of magnitude faster than the
careful scheme, and like [Sander et al. 2007], its processing time is
independent of the cache size. Figure 7 shows a visualization of the
results on 4 meshes from Table 1. The spatial distribution of cache
efficiency is conveyed by coloring each mesh vertex according to
its total number of cache misses. The color white corresponds to
the optimal single cache miss per vertex. Darker shades of gray
indicate progressively more cache misses per vertex.

We demonstrate the practical advantages of our efficient edge-
processing traversal with three applications (see Figure 8).

Shadow volumes The mesh is rendered as a shadow volume into
a screen-space stencil buffer [Heidmann 1991]. The shadow vol-
ume is formed within the geometry shader, by displacing triangles
to form a front cap and a rear cap (depending on whether they face
the light), and by extruding silhouette edges (with respect to the
light) to form quadrilaterals spanning these caps. As a baseline, we
used sample program ShadowVolume10 of the DirectX 10 SDK,
and modified it to use our optimized set of cover primitives (Fig-
ure 8a).

Note that our geometry shader outputs triangle strips rather than
independent triangles (Figure 10). This results in a small speed
improvement of 10–20%, and was applied in all measurements.

Line illustration Many rendering techniques enhance object ap-
pearance by emphasizing silhouettes or other important contours,
e.g. [Gooch and Gooch 2001; DeCarlo et al. 2003]. With geom-
etry shaders, silhouette rendering is in some sense an ideal sce-
nario to highlight the efficiency of GPU edge-processing, because
the output silhouette often has sub-linear complexity. We devel-
oped a simple prototype that renders both silhouettes and sharp fea-
tures (Figure 8b). Again, we used as a baseline the basic approach
of processing all faces as triangles with adjacency following the
framework from the DX10 shadow volume sample. Since we use
small quadrilaterals as the rendering primitive, we can control the
thickness of the lines, as well as render the mesh triangles in white
for hidden line removal, all in a single rendering pass.

Motion blur Wloka and Zeleznik [1996] describe a real-time
technique to approximate the blur caused by the motion of an ob-
ject relative to the viewer. The approach has similarities to shadow
volumes, in that the mesh is also split into a front part and a rear
part, and silhouette edges (with respect to the motion) are extruded
to form quadrilaterals. As in the previous applications, we com-
pared against the traditional approach of processing all triangles
with adjacency. The resulting motion volume is rendered with par-

 1

 1.5

 2

 2.5

 3

 3.5

 4

 12 16 20 24 28 32 36 40 44 48 52 56 60 64

C
M

/V

Cache size

off-the-shelf

fast

careful

Figure 9: Number of cache misses per vertex comparing our order-
ing algorithms against the off-the-shelf technique, when run on the
bunny mesh.

Figure 10: Grouping of geometry shader output to form triangle
strips, for the applications of shadow volume and motion blur. Just
two strips are sufficient in all cases.

tial transparency. Using a geometry shader program, this can all be
done in a single rendering pass (Figure 8c).

As in the shadow volume application, we output triangle strips
since the extruded quadrilaterals share vertices with the emitted tri-
angle faces (Figure 10).

Quantitative speedups We measured performance speedup fac-
tors of using our approach against the baseline methods outlined
above for each application. Measurements were performed on both
an NVIDIA GeForce 8800GTX and an AMD ATI Radeon HD2900.
To simulate a more realistic graphics scene, the measurements used
multiple instances of the models to factor out overhead due to frame
setup and other elements in the scene.

Through experimentation, we observed best results for our ap-
plications on the AMD and NVIDIA cards when setting the vertex
cache parameter to 12 and 24 vertices, respectively. At any rate, the
results we report were not significantly affected by the cache size
parameter. For our geometry-shader-bound prototype applications,
which just use Gouraud shading, the vertex programs may be overly
simple. We have verified that a more expensive vertex program does
give rise to greater speedups. It is likely that geometry shader im-
plementations may become more efficient in the future, thus further
increasing the importance of careful primitive ordering.

The speedups produced by using our approach are reported in
Table 2. Since we are processing just over half of the number of
primitives, the speedup of the cover computation could reach close
to 2×. However, in practice this does not occur because each of
our geometry shader instances emit more data. In general, these
applications results in speedups between 1.5× and 2.0× for most
input meshes.

Other applications Many other applications would also ben-
efit from efficient edge traversal. Some notable examples in-
clude fur rendering by selective extrusion of fins from edges near
the silhouette [Lengyel et al. 2001], soft-shadows using penum-
bra wedges [Assarsson and Akenine-Möller 2003], and beveled
edges [Bahnassi and Bahnassi 2007].

(a) Shadow volume (b) Line illustration (c) Motion blur

Figure 8: Screenshots of our prototype applications.

Table 2: Rendering speedup of our prototype applications com-
pared to the common approach of processing one adjacency prim-
itive per mesh face. Timings of our approach (in milliseconds) are
shown in parenthesis.

Input mesh Shadow volume Line illustration Motion blur

Name AMD NVIDIA AMD NVIDIA AMD NVIDIA

fandisk 1.65 1.76 (0.6) 1.70 1.82 (0.6) 1.54 1.52 (0.6)
gargoyle 1.58 1.76 (1.2) 1.70 1.83 (1.2) 1.54 1.51 (1.1)
feline 1.60 1.77 (2.3) 1.72 1.87 (2.4) 1.59 1.52 (2.2)
bunny 1.73 1.76 (3.2) 1.81 1.92 (3.7) 1.60 1.48 (3.4)
dragon 1.74 1.82 (7.7) 1.84 1.89 (7.9) 1.62 1.52 (8.5)
turtle 1.70 1.75 (13.7) 1.80 1.96 (14.0) 1.60 1.48 (14.9)
buddha 1.70 1.73 (55.5) 1.80 1.95 (57.0) 1.61 1.50 (60.8)

One final note is that the set of cover faces can also be used to
render the wireframe of the model (without a geometry shader, i.e.
with mode D3D10 FILL WIREFRAME). We noticed a speedup of
roughly 70% when using the cover faces rather than all faces of
the model. This is naturally not as efficient as the 100% improve-
ment that can be obtained by creating a buffer of lines containing
the edges of the model. However, it may be of practical value if the
list of cover faces is already available (e.g., for one the above appli-
cations), since it would not consume any additional video memory.

8 Discussion
Dismissed alternative schemes We briefly summarize some
other schemes that we considered and their associated drawbacks.

Each edge could be processed individually by considering its
pair of adjacent faces, encoded by 4 vertices, e.g. in an indexed
line-with-adjacency primitive. However, this would result in an in-
dex buffer with 4e indices for e edges, about twice as many as in
our scheme. Also, face processing could not be well load-balanced
among these primitives.

The triangle-strip-with-adjacency primitive would appear to be
a promising way to string together several triangle-with-adjacency
primitives. However, even on a regular mesh region, one cannot
obtain a regular covering of the mesh edges. Therefore, branching
would be necessary in the geometry shader, again degrading SIMD
parallelism efficiency.

Limitations In current GPUs, the introduction of any geometry
shader slows down the rendering pipeline. Therefore using our
representation to render just the mesh faces incurs additional cost.

However, for most applications that perform edge processing, the
bottleneck is in the edge processing itself, and therefore the mesh
rendering time does not significantly impact the results. The timing
numbers in the previous section take that into account. Since ge-
ometry shaders are a novel architectural feature, they may be better
optimized in future hardware generations.

9 Summary and future work
We have designed an efficient representation for processing both
edges and faces of a mesh on a GPU. Our optimized traversal
representation provides two separate improvements over prior ap-
proaches: (1) a nearly two-fold reduction in the number of adja-
cency primitives, and (2) additional reduction in vertex processing
and memory bandwidth due to improved vertex caching. These op-
timizations result in substantial gains for several real-time rendering
methods.

Future hardware is likely to include larger primitives in the form
of surface patches. Defining efficient traversals for such patches
will be an interesting area of continuing research.

Acknowledgments
Pedro Sander was partly supported by Hong Kong RGC CERG
grant #619008.

References
ANDRADE, D., RESENDE, M. G. C., and WERNECK, R. 2008.

Fast local search for the maximum independent set problem. In
Proceedings of Workshop on Experimental Algorithms, LNCS
5038, pages 220–234.

ASSARSSON, U. and AKENINE-MÖLLER, T. 2003. A geometry-
based soft shadow volume algorithm using graphics hardware.
ACM Transactions on Graphics (Proceedings of ACM SIG-
GRAPH 2003), 22(3):511–520.

BAHNASSI, H. and BAHNASSI, W. 2007. Micro-beveled edges.
In ShaderX5: Advanced Rendering Techniques. Charles River
Media.

BLYTHE, D. 2006. The Direct3D 10 system. ACM Transactions on
Graphics (Proceedings of ACM SIGGRAPH 2003), 25(3):724–
734.

BRENNAN, C. 2002. Shadow volume extrusion using a vertex
shader. In ShaderX: Vertex and Pixel Shader Tips and Tricks.
Wordware.

CARD, D. and MITCHELL, J. 2002. Non-photorealistic render-
ing with pixel and vertex shaders. In ShaderX: Vertex and Pixel
Shader Tips and Tricks. Wordware.

CHHUGANI, J. and KUMAR, S. 2007. Geometry engine opti-
mization: cache friendly compressed representation of geome-
try. In Proceedings of Symposium on Interactive 3D Graphics
and Games (I3D), pages 9–16.

CHOW, M. M. 1997. Optimized geometry compression for real-
time rendering. In IEEE Visualization, pages 347–354.

CROW, F. C. 1977. Shadow algorithms for computer graphics. In
Proceedings of ACM SIGGRAPH 77, pages 242–248.

DECARLO, D., FINKELSTEIN, A., RUSINKIEWICZ, S., and SAN-
TELLA, A. 2003. Suggestive contours for conveying shape.
ACM Transactions on Graphics (Proceedings of ACM SIG-
GRAPH 2003), 22(3):848–855.

DEERING, M. 1995. Geometry compression. In Proceedings of
ACM SIGGRAPH 95, pages 13–20.

EDMONDS, J. and JOHNSON, E. L. 1973. Matching, Euler tours
and the Chinese postman. Mathematical Programming, 5:88–
129.

ESTKOWSKI, R., MITCHELL, J. S. B., and XIANG, X. 2002. Op-
timal decomposition of polygonal models into triangle strips. In
Proceedings of Symposium on Computational Geometry, pages
254–263.

EVANS, F., SKIENA, S., and VARSHNEY, A. 1996. Optimizing
triangle strips for fast rendering. In IEEE Visualization, pages
319–326.

GABOW, H. N. 1974. Implementation of Algorithms for Maximum
Matching on Nonbipartite Graphs. PhD thesis, Stanford Univer-
sity.

GAREY, M. R. and JOHNSON, D. S. 1977. The rectilinear Steiner
tree problem is NP-complete. SIAM Journal on Applied Mathe-
matics, 32(4):826–834.

GOOCH, B. and GOOCH, A. 2001. Non-photorealistic rendering.
A. K. Peters, Ltd.

GROSSO, A., LOCATELLI, M., and PULLAN, W. 2007. Simple
ingredients leading to very efficient heuristics for the maximum
clique problem. Journal of Heuristics, on-line.

HALL, P. 1935. On representatives of subsets. Journal of the Lon-
don Mathematical Society, 10:26–30.

HEIDMANN, T. 1991. Real shadows real time. Iris Universe, 18:
28–31.

HERTZMANN, A. 1999. Silhouettes and outlines. In Introduction to
3D Non-Photorealistic Rendering, chapter 7. ACM SIGGRAPH
Course Notes.

HOPCROFT, J. E. and KARP, R. M. 1973. An n5/2 algorithm
for maximum matchings in bipartite graphs. SIAM Journal on
Computing, 2(4):225–231.

HOPPE, H. 1999. Optimization of mesh locality for transparent
vertex caching. In Proceedings of ACM SIGGRAPH 99, pages
269–276.

KARYPIS, G. and KUMAR, V. 1995. METIS: Unstructured Graph
Partitioning and Sparse Matrix Ordering System, Version 2.0.

LENGYEL, J., PRAUN, E., FINKELSTEIN, A., and HOPPE, H.
2001. Real-time fur over arbitrary surfaces. In Proceedings of
Symposium on Interactive 3D Graphics and Games (I3D), pages
227–232.

LIN, G. and YU, T. P.-Y. 2006. An improved vertex caching
scheme for 3D mesh rendering. IEEE Transactions on Visual-
ization and Computer Graphics, 12(4):640–648.

MCGUIRE, M. and HUGHES, J. 2004. Hardware-determined fea-
ture edges. In Proceedings of Symposium on Non-Photorealistic
Animation and Rendering (NPAR), pages 35–47.

MICROSOFT CORP. 2007. DirectX 10 SDK.

ROTHBERG, E. 1985. MATHPROG. http://elib.zib.de/
pub/Packages/mathprog/matching/weighted.

SANDER, P. V., NEHAB, D., and BARCZAK, J. 2007. Fast triangle
reordering for vertex locality and reduced overdraw. ACM Trans-
actions on Graphics (Proceedings of ACM SIGGRAPH 2007),
26(3):89.

TARIQ, S. 2007. Fur (using shells and fins). Technical Report
WP-03021-001-v01, NVIDIA Corp.

WLOKA, M. M. and ZELEZNIK, R. C. 1996. Interactive real-time
motion blur. The Visual Computer, 12(6):283–295.

XIANG, X., HELD, M., and MITCHELL, J. S. B. 1999. Fast
and effective stripification of polygonal surface models. In Pro-
ceedings of Symposium on Interactive 3D Graphics and Games
(I3D), pages 71–78.

Appendix: Finding a lower bound on |C|
A simple lower bound on the size |C| of our vertex cover is obtained
as follows. Let d(v) denote the degree of vertex v (in either the
primal or the dual graph). Then, d(v′) ≤ 3 for every dual vertex
v′ ∈ V ′ since each triangle has at most 3 neighbors. Thus, every
vertex in C covers at most three edges, and so |C| ≥ |E′|/3.

This can be tightened by obtaining a lower bound on the number
of edges that must be covered twice. The intuition is that all odd-
degree vertices in the mesh must have at least one adjacent edge
that is covered twice, and moreover these doubly covered edges
must form paths that terminate only at other odd-degree vertices.

Formally, consider a vertex v in the primal graph, the ring R(v)
of dual vertices surrounding v (i.e. a red cycle in Figure 3a), and
let t(v) denote the number of edges in R(v) that are covered twice.
Since C is a cover, one can show that t(v) ≡ d(v) (mod 2). Let
G̃ = (V, Ẽ) be a minimum subgraph of G (minimizing |Ẽ|) such
that for all v ∈ V , dG̃(v) ≡ dG(v) (mod 2). Then the number of
edges covered twice by C must be at least |Ẽ|. Arguing as before,
we obtain |C| ≥ (|E′|+ |Ẽ|)/3.

A set of edges for which the odd-degree vertices coincide with a
set T is called a T -join. Thus, the set Ẽ is a minimum Vodd-join,
where Vodd is the set of odd-degree vertices in G.

It has been shown that finding a minimum T -join can be reduced
to a minimum-weight perfect matching problem. In particular, Ed-
monds and Johnson [1973] have shown that the minimum Vodd-
join is equivalent to a minimum weight matching between odd-
degree vertices, where the weight attached to any pair of vertices
u, v ∈ Vodd is exactly the shortest-path distance in G, distG(u, v).

Thus, to compute |Ẽ|, we find this minimum-weight perfect
matching using the O(|Vodd|3) algorithm by Gabow [1974], as im-
plemented in the METIS library [Karypis and Kumar 1995]. We are
able to greatly speed up this computation by noting that a shortest

path between two vertices in Vodd that crosses two other vertices
in Vodd cannot contribute to the minimum-weight perfect match-
ing. We call such paths illegal. Often this prunes 99% of the search
space. To verify the validity of this optimization, we prove the fol-
lowing lemma (the actual proof is not necessary for the implemen-
tation of either our algorithm, or the lower bound).

Lemma 2. Let G = (V, E) and G̃ = (V, Ẽ) where Ẽ is a mini-
mum Vodd-join. Then

1. Ẽ is a disjoint union of legal paths between vertices in Vodd.
2. Let Gprune = (Vodd, Eprune) be a weighted graph where we

connect u, v ∈ Vodd by an edge of weight distG(u, v) if and
only if no shortest path between u and v is illegal. Then any
Gprune has a perfect matching and any minimum-weight per-
fect matching has weight |Ẽ|.

Proof. To prove (1), note that G̃ contains no cycles (their removal
preserves a Vodd-join). Thus, G̃ is a forest, i.e. a vertex-disjoint
union of trees. For each such tree T , we find a legal path decom-
position by repeatedly performing the following: Contract all unin-
terrupted paths in T to individual edges. Choose a lowest leaf and
match it to its sibling, removing the connecting path in T .

To prove (2), note that for any such matching, if the total length
of all shortest paths is minimal, the paths must be edge-disjoint.
Thus, the union of all paths is indeed a Vodd-join. We must show
that for some minimal Vodd-join Ẽ, no u, v ∈ Vodd connected by
a legal path in Ẽ are also connected by an illegal shortest path. We
start with two crucial observations, which follow from the minimal-
ity of Ẽ:

Observation 1. For any vertices a, b in the same tree T in G̃, the
shortest tree path Ta,b connecting them is a shortest path in G.

Observation 2. For any vertices a, b as above, the tree path Ta,b

is the only shortest path that intersects Ẽ.

Both observations follow from the same principle. If we had
a path p∗ between a and b that violates either Observation 1 or
Observation 2 (that is, p∗ is shorter than Ta,b or is a distinct shortest
path intersecting Ẽ), we could construct a strictly smaller Vodd-join
by removing path Ta,b and taking the symmetric difference of the
remaining edge set and p∗. That is, the set (Ẽ \ Ta,b) \ p∗ ∪ p∗ \
(Ẽ \ Ta,b) would contradict the minimality of Ẽ (see replacements
in Figure 11).

We may assume that G̃ contains the minimum number of trees
among all minimum Vodd-joins. Suppose for the sake of contradic-
tion that for some vertices u, v ∈ Vodd in some tree T connected by
a legal T -path p, there exists an illegal shortest path p′ containing
two internal vertices x, y ∈ Vodd. We consider two cases:

Case 1: Nodes x and y are in the same tree T ′ (possibly T ′ = T)
in G̃ (Figure 11a). Proof. Let p′x,y be the sub-path of p′ from x to y,
and let T ′x,y be the shortest tree path from x to y. By the minimality
of p′ and Observation 1, both paths are shortest paths from x to y.
Thus by replacing p′x,y with T ′x,y , we get a shortest path p′′ =
p′ \ p′x,y ∪ T ′x,y (Figure 11b). This path is illegal, and so distinct
from p, and it intersects Ẽ, which by Observation 2 contradicts the
minimality of Ẽ (Figure 11c).

Case 2: For trees T ′ 6= T ′′ in G̃, x ∈ T ′ and y ∈ T ′′ (Fig-
ure 11d). Proof. By Observation 2, p′ does not intersect Ẽ. Thus
if we replace p with p′, the new Vodd-join Ẽ′ = (Ẽ \ p) ∪ p′

(Figure 11e) contains strictly fewer trees than Ẽ, contradicting our
assumption for G̃.

Figure 11: (a) Case 1. (b) Collapse p′ to T ′. (c) Replacement yields
fewer edges. (d) Case 2. (e) Replacement yields fewer trees.

