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Abstract
We introduce a method for increasing the framerate of real-time
rendering applications. Whereas many existing temporal upsam-
pling strategies only reuse information from previous frames, our
bidirectional technique reconstructs intermediate frames from a pair
of consecutive rendered frames. This significantly improves the
accuracy and efficiency of data reuse since very few pixels are si-
multaneously occluded in both frames. We present two versions of
this basic algorithm. The first is appropriate for fill-bound scenes as
it limits the number of expensive shading calculations, but involves
rasterization of scene geometry at each intermediate frame. The sec-
ond version, our more significant contribution, reduces both shading
and geometry computations by performing reprojection using only
image-based buffers. It warps and combines the adjacent rendered
frames using an efficient iterative search on their stored scene depth
and flow. Bidirectional reprojection introduces a small amount of
lag. We perform a user study to investigate this lag, and find that its
effect is minor. We demonstrate substantial performance improve-
ments (3–4×) for a variety of applications, including vertex-bound
and fill-bound scenes, multi-pass effects, and motion blur.
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1 Introduction
Reprojection is a general approach for improving real-time rendering
by reusing expensive pixel shading from nearby frames [Scherzer
et al. 2011]. It has proven beneficial in popular games. For instance,
reverse reprojection [e.g. Nehab et al. 2007; Scherzer et al. 2007] is
used in Gears of War II to accelerate low-frequency lighting effects,
and in Crysis 2 to antialias distant geometry.
Such data reuse techniques can be broadly categorized based on
three separate algorithmic choices:
• Temporal direction: Whether shading data is propagated forward,

backward, or in both directions in animation time;

• Data access: Whether pixels are “pushed” (scattered) onto the
current frame, or “pulled” (gathered) from other frames;

• Correspondence domain: Whether the motion data (e.g., velocity
vectors) used to reproject the samples is defined over the source
image domain or over the rendered target.

As reviewed in Section 2, different techniques follow different strate-
gies for each of the choices above (see also Table 1).
In this paper, we present reprojection techniques for temporally up-
sampling rendered content by inserting interpolated frames between

Table 1: Strategic algorithmic choices in reprojection techniques.

Temporal Data Correspondence
direction access domain

e.g., Badt [1988] Forward Scatter Source
e.g., Nehab et al. [2007] Forward Gather Target
e.g., Didyk et al. [2010a] Forward Hybrid Hybrid

Our scene-assisted scheme Both Gather Target
Our image-based scheme Both Gather Source

pairs of rendered frames. Borrowing terminology from video com-
pression, we refer to rendered frames as intra- or simply I-frames,
and to interpolated frames as bidirectionally predicted- or B-frames.
Our approach offers two major contributions: (1) bidirectional repro-
jection which combines samples both forward and backward in time,
and (2) image-based reprojection which establishes reprojection
correspondences based on velocity fields stored in the I-frames.
Temporal direction A fundamental limitation of existing reverse
reprojection techniques [e.g. Nehab et al. 2007] is that they incur a
drop in performance whenever there are disoccluded regions in the
scene—elements visible in the current frame that were not visible in
the preceding frame. This is because such regions must be reshaded
from scratch. Since the number of disoccluded pixels varies over
time, framerates may fluctuate undesirably. In addition, the entire
scene geometry must be processed in order to reshade, incurring
significant overhead in complex scenes.
Our bidirectional reprojection temporally upsamples rendered con-
tent by reusing data from both backward and forward temporal
directions. This provides two clear benefits:
• Smooth shading interpolation: The vast majority of pixels in a B-

frame are also visible in both I-frames. This lets us fetch shading
information from both directions and create an interpolated sig-
nal that greatly attenuates the popping artifacts associated with
one-sided reconstruction (i.e., sample-and-hold extrapolation).
This is particularly important for fast changing shading signals
(e.g., dynamic shadows and glossy lighting).

• Higher, more stable framerate: Disoccluded regions are ex-
tremely rare since they must be occluded in both I-frames.
Thus with bidirectional reprojection we can avoid reshading
and achieve higher and steadier framerates.

One downside of bidirectional reprojection is that it introduces a lag
in the resulting image sequence. This lag is not present in forward-
only reprojection schemes. We present a careful analysis of this lag,
showing that it is small (less than one I-frame). Moreover, results of
a user study we conducted allow us to conclude that it is beneficial
to use bidirectional reprojection in a real-time gaming scenario.
Data access Some reprojection techniques use a forward-map-
ping strategy to scatter shading samples from prior frames into the
new frame. However, scatter is difficult to realize efficiently in
prevalent graphics systems. Accurate filtering of irregularly scat-
tered samples is also challenging. Like recent reverse reprojection
techniques, we use a gather strategy, which simply involves texture
lookups into a previously rendered image. The gather operations
thus benefit from the accurate, efficient texture-sampling hardware.
Correspondence domain Prior gather-based reprojection tech-
niques require that geometry be rasterized in the target frame to
establish a correspondence with source frame pixels. We develop an

http://doi.acm.org/10.1145/2024156.2024184
http://portal.acm.org/ft_gateway.cfm?id=2024184&type=pdf
http://research.microsoft.com/~hoppe/proj/bireproj/
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image-based reprojection scheme that instead performs reprojection
using only image buffers—without any geometry rasterization—and
can therefore accelerate both vertex- and fill-bound scenes. The
key idea is to store depth maps and 3D scene flow in the source
I-frames, so as to enable the B-frame to be reconstructed by an
efficient iterative search performed in a fragment shader. Thus, the
geometry is rasterized only at the I-frames, and the cost of comput-
ing B-frames is simply proportional to the number of framebuffer
pixels. Furthermore, we show how to achieve a stable framerate by
interleaving the I-frame computation with the much less expensive
B-frame processing. In many cases, our image-based algorithm
produces B-frames that are nearly indistinguishable from reference
images while providing a 3- to 4-fold increase in framerate.

2 Previous work

Data reuse Exploiting spatiotemporal coherence to render ani-
mated image sequences more efficiently has been extensively studied
in both offline and interactive rendering systems (see [Scherzer et al.
2011] for a recent survey). Here we focus on GPU-based real-time
rendering systems. Recently proposed reverse reprojection methods
allow reusing the shading from the previous frame to reduce the cost
of computing the shading in the current frame [Nehab et al. 2007;
Sitthi-amorn et al. 2008a,b]. Similar approaches have also been
applied to amortize expensive sampling computations for improving
shading quality [Scherzer et al. 2007; Nehab et al. 2007; Yang et al.
2009; Scherzer et al. 2009; Mattausch et al. 2010]. Finally, a recent
technique reuses information from a stack of previously rendered
frames to perform spatial upsampling on each frame [Herzog et al.
2010]. In contrast, our approach performs temporal upsampling
from both temporal directions.
Image warping and interpolation Image warping algorithms
play a key role in image morphing and image-based rendering sys-
tems [Beier and Neely 1992; Chen and Williams 1993; McMillan
and Bishop 1995; Seitz and Dyer 1996; Vedula et al. 2002; Fitzgib-
bon et al. 2005; Stich et al. 2008a,b; Eisemann et al. 2008]. These
techniques often use sparse feature correspondences obtained ei-
ther from user input or automatic feature extraction algorithms. A
notable exception is the Moving Gradients system proposed by Ma-
hajan et al. [2009], which computes space-time paths through an
image sequence and uses gradient domain techniques to reconstruct
the pixel values at intermediate frames. In contrast to our work,
Moving Gradients targets a harder problem in which accurate and
dense scene flow and scene depth are not available.
Mark et al. [1997] describe a system that upsamples rendered frames
by warping images with the aid of scene depth. However, this
method only considers changes in viewpoint. A related method, by
Didyk et al. [2010a], targets high-refresh-rate displays. Similar to
our approach, exact forward motion flow of each I-frame is computed
when rasterizing the scene, using known animation input of the next
I-frame. This flow field is used to compute a forward image warp
defined by a coarse grid superimposed over the framebuffer. In
contrast, by reconstructing a dense scene flow field that relates each
B-frame to both of its adjacent I-frames, our technique produces
higher-quality interpolated content and is thus more suitable for
applications targeting lower framerates, where individual B-frames
are more discernible. A comparison to this method is available in
the supplemental material. Didyk et al. [2010b] extend this grid
warping method using adaptive grid refinement to achieve better
quality in stereo view synthesis. Combining this with bidirectional
reprojection is an interesting direction for future work.
In concurrent work, Andreev [2010] presents an efficient framerate
up-conversion method that uses motion vectors to perform reverse
reprojection in image space. His approach generates an intermediate
frame by halving the motion vector in the next I-frame, and uses this
motion information to reproject shading result from the previous

I-frame. Our approach introduces an iterative search for more accu-
rate reprojection. Andreev prefers reprojection in only the forward
temporal direction, aiming for less latency in a third-person game.
Bidirectional reprojection produces far fewer disocclusion artifacts
and better shading interpolation, which again can be particularly
important for interpolating low initial framerates.

Video compression Standard video compression methods such
as H.264, AVC, and MPEG-4 [Wiegand et al. 2003; Sullivan and
Wiegand 2005] incorporate some form of motion compensation. The
motion of small windows of pixels (blocks) between consecutive
frames is estimated and used to further reduce the bitrate. These
techniques encode video frames using information from multiple
reference I-frames, in a way analogous to bidirectional reprojection.

Pajak et al. [2011] introduce a method for efficiently streaming
rendered frame sequences for remote rendering, assisted by exact
scene motion data. Their method is based on spatio-temporal upsam-
pling [Herzog et al. 2010] and an efficient edge-image compression
scheme, which significantly reduces transmission bandwidth with
low computational overhead.

3 Overview

Our basic approach is to render the full 3D scene at I-frames using
conventional methods and then insert interpolated B-frames between
these to achieve a higher framerate. As compared to standard single-
direction reprojection methods, this approach significantly lowers
disocclusion artifacts by virtue of using information from two view-
points instead of one. The interpolation process is guided by scene
flow: the 3D velocities of visible surface points between two frames.
For each pixel in a B-frame, the scene flow indicates where to pull
shading information from the I-frames.

We use Ft to denote the framebuffer of the I-frame rendered at time
t ∈ Z. Between successive I-frames Ft, Ft+1, we compute n−1
B-frames, corresponding to times t+α with α ∈ { 1

n , . . . ,
n−1
n }.

Let the symbol p = (px, py) denote the 2D coordinates of a pixel in
clip space. The third coordinate (depth) is available during geometry
rasterization and in the depth buffer Z. Let p̄ =

(
px, py, Z[p]

)
denote its corresponding 3D coordinates. Because models may
deform and the viewpoint may change over time, we must account
for changes in clip spaces. We let πt→t′ denote the transformation
that maps the surface point p̄t at time t into the clip space of time t′.
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Figure 1: Overview of scene-assisted and image-based reprojection
algorithms for reconstructing a pixel It+α[pt+α] in a B-frame from
its adjacent rendered I-frames. Scene-assisted reprojection computes
scene flow during conventional triangle rasterization, while image-
based reprojection estimates the flow by iteratively searching the
adjacent frames’ depth and 3D flow fields.



Desired point pt Retrieve df1 1st iteration Retrieve df2 2nd iteration Retrieve df3 3rd iteration

Figure 2: Three iterations of the search algorithm used to estimate the scene flow at one pixel in a B-frame with respect to the previous I-frame.

This transformation is easily computed during rasterization of the
frame at time t, by supplying the animation and camera parameters
for time t′, and leveraging hardware interpolation of per-vertex
attributes [Nehab et al. 2007].

We introduce two interpolation algorithms:

• Scene-assisted interpolation computes exact scene flow between
each B-frame and its pair of neighboring I-frames by rasterizing
scene geometry (without shading) at each B-frame. (Section 4)

• Image-based interpolation computes exact scene flow only be-
tween adjacent I-frames and uses a simple iterative search to
estimate scene flow between each B-frame and its neighboring
I-frames. This sacrifices accuracy in the interpolated frames, but
allows geometry to be rasterized just in the I-frames. (Section 5)

We next describe these two strategies in detail. Section 9 presents
results along with a comparison.

4 Scene-assisted interpolation

This technique renders the depth of the scene at each B-frame (no
shading) and uses reprojection to reconstruct the shading from the
two adjacent I-frames (Figure 1, top). Because shading is only ever
computed at the I-frames, this approach can increase the framerate
of fill-bound scenes.

I-frame Each I-frame buffer Ft = (It, Zt) consists of an RGBA
color image It and a depth buffer Zt, obtained using standard ras-
terization. Before reconstructing the B-frames within the interval
[t, t+1], we must first rasterize Ft+1. Note that Ft will have already
been generated during the rendering of the interval [t−1, t].

B-frame To reconstruct the B-frame image It+α, we rasterize the
scene geometry at time t + α and perform reprojection into both
adjacent I-frames (Ft, Ft+1) (see Figure 1). The position of the 3D
surface point visible at each pixel p̄t+α with respect to the clip space
at time t and t+1 is computed in the vertex shader and interpolated
during rasterization [Nehab et al. 2007]. Note that the necessary
camera parameters and animation parameters at time t+1 are known
since frame Ft+1 has already been rendered. The reprojection step
compares the depth of πt+α→t(p̄t+α) and πt+α→t+1(p̄t+α) to the
depth stored at Zt[πt+α→t(p̄t+α)] and Zt+1[πt+α→t+1(p̄t+α)], re-
spectively, to identify possible occlusions [Nehab et al. 2007]. If
the surface point is visible in only one I-frame, we simply set
It+α(pt+α) to its shaded color there. If it is visible in both, we
blend the shaded colors based on α. If it is visible in neither, we
follow one of two approaches:

• Shade-on-miss simply evaluates the pixel shader to obtain an
accurate result.

• Closest-on-miss uses the color from the nearest buffer. In other
words, the depth values at the reprojected positions in Zt and
Zt+1 are compared and the shading associated with whichever
is smaller is used.

In our results, we use the closest-on-miss approach. This strategy
maps well to the SIMD architecture of modern graphics hardware
since it avoids any conditional execution of the expensive surface
shader and resulting branch divergence at neighboring pixels. Fur-
thermore, we have found that it produces results that are nearly in-

distinguishable from the more conservative shade-on-miss approach,
largely due to the rarity of this “double miss” case.

5 Image-based interpolation

Our image-based interpolation algorithm also reconstructs B-frames
at uniformly spaced time locations in the interval [t, t+1], but does
so without rasterizing the scene geometry. The idea is to augment the
I-frame buffers with information about the 3D scene flow between
adjacent I-frames, and use that to drive an image-based interpolation
process. More specifically, while Ft is rendered we compute and
store a forward flow field V ft that encodes the motion of the scene
at each pixel between I-frames at times t and t+1 (the 3D motion
relative to the image plane at time t):

V ft [p] = πt→t+1(p̄t)− p̄t . (1)

Similarly, we compute a backward flow field V bt+1 during rendering
of Ft+1 that encodes the per-pixel relative scene motion between
I-frames at times t+ 1 and t:

V bt+1[p] = πt+1→t(p̄t+1)− p̄t+1 . (2)

These flow fields are computed using the same reprojection tech-
nique described above (see [Nehab et al. 2007]).

I-frame At time t, we first render V ft . Then, we render the buffers
It+1, Zt+1, and V bt+1 associated with time t+ 1 in a single ren-
dering pass using multiple render targets. Note that buffers It
and Zt, which will also be needed to reconstruct B-frames in the in-
terval [t, t+1], are available after rendering the I-frame at time t−1.

B-frame For each pixel in each B-frame, we wish to find the pixel
coordinates of the same surface point (if visible) in the adjacent I-
frames so that we can interpolate their colors. As described next, we
estimate these positions using an iterative search algorithm that can
be efficiently implemented on graphics hardware and then discuss
some useful optimizations.

5.1 Iterative search

For each pixel pt+α in B-frame Ft+α, we need to compute the corre-
sponding neighboring locations pt = πt+α→t(p̄t+α) in I-frame Ft
and pt+1 = πt+α→t+1(p̄t+α) in I-frame Ft+1. Since we do not
have access to the scene geometry and camera parameters at
time t+ α, and thus cannot perform exact reprojection as in the
scene-assisted case, we instead approximate these positions using a
greedy search directed by the forward and backward flow fields.

Forward direction We assume that the pixel coordinate pt+α and
its corresponding coordinate pt in I-frame It are related to one
another according to the fractional displacement αV ft [pt] along the
forward flow field (leftmost image in Figure 2). Specifically,

pt+α = pt + αV ft [pt].xy . (3)

This is equivalent to assuming that all surface points undergo linear
motion relative to the moving coordinate frame associated with the
clip-space coordinate system at time t+ α. Under these conditions,
if the 3D surface point at pixel pt+α is visible in I-frame Ft, then at
least one solution to Equation 3 must exist (up to sampling error).
Note that multiple solutions may exist, since other points visible
in Ft may also map to pt+α but may be occluded in this frame.



We estimate pt using a simple search (see Figure 2). We start with

pt,0 = pt+α , (4)

and iteratively compute

pt,i = pt+α − dfi where dfi = αV ft [pt,i−1].xy . (5)

To make the algorithm efficient on a SIMD architecture, we always
terminate the search after a fixed number m of iterations (m = 3 for
all of the results in this paper). We compute the clip-space depth of
the computed surface point as

zf = Zt[pt,m] + αV ft [pt,m].z . (6)

Finally, a measure of the screen-space error is given by

ef =
∥∥∥(pt,m + αV ft [pt,m].xy

)
− pt+α

∥∥∥ . (7)

Backward direction In parallel, we perform the same process as
above, but with respect to the I-frame at time t+1. Specifically,

pt+1,0 = pt+a , (8)

pt+1,i = pt+α − dbi , (9)

dbi = (1− α) V bt+1[pt+1,i−1].xy . (10)

Similarly, we compute the depth with respect to the clip-space coor-
dinate system at frame t+ α as

zb = Zt[pt+1,m] + (1− α) V bt+1[pt+1,m].z , (11)

and screen-space error

eb =
∥∥∥(pt+1,m + (1− α)V bt+1[pt+1,m].xy

)
− pt+α

∥∥∥ . (12)

5.2 Visibility and shading

After these searches terminate, we test whether the resulting screen
space errors are within a threshold (ef < ε1 and eb < ε1):

1. If they are both below this threshold and have similar depths(
|zf − zb| < ε2

)
, we conclude that they refer to the same 3D

surface point and a straightforward approach would be to simply
blend the two colors according to α:

(1− α)It[pt,m] + αIt+1[pt+1,m] . (13)

However, we have found that this introduces undesirable blurring
since the two surface points are seldom identical. Instead, we
identify the point with the smallest screen-space error and project
that point into the other I-frame before blending the colors. (Due
to the exact flow fields, we can perform this mapping precisely.)
Thus, in the case that ef < eb, we compute the blended color as:

(1− α)It[pt,m] + αIt+1

[
pt,m + V ft [pt,m].xy

]
. (14)

Conversely, if eb ≤ ef , we compute the blended color as:

(1−α) It
[
pt+1,m+V bt+1[pt+1,m].xy

]
+α It+1[pt+1,m] . (15)

Note that we must ensure the point is visible in the other I-frame.
In the rare event that it is not, we fall back to only using the
results from the frame with the least screen-space error.

2. If both errors are below ε1 but have different depths, we select
the color closest to the camera (since it occludes the other point).
We still map that same point into the other I-frame, and if it is
visible there as well, we blend the two colors as in step 1 above;
this is essentially a “second chance” to find the appropriate point
in the other frame.

3. In the rare case that both errors exceed the tolerance, we apply
the blending procedure in step 1 to the solutions of both searches.

It It+1It+0.25 It+0.5 It+0.75

Linear Blending Scene-assisted Reference

Image-space (Basic) Image-space (Dual Init.) Image-space (Dual+Latest frame Init.)

Figure 3: Bidirectional reprojection on an animated scene that
involves translation, rotation, and scaling.

5.3 Additional search initializations

Although the search described above produces good matches in
many cases, there are situations where it fails to identify a correct
correspondence. We have developed several alternative initialization
strategies that improve performance in other common cases. In prac-
tice, we always perform these in addition to the default initialization
strategy described previously and use whichever solution has the
smallest reprojection error. In Section 6, we discuss how our method
can be adapted for scenes that include objects that are simply not
suitable for image-based bidirectional reprojection.

Dual initialization One difficulty occurs along the silhouettes of
an object that is both rotating and translating. In the previous I-
frame, the surface is visible at the pixel but if one subtracts the
motion vector one falls off the object, and in the next I-frame the
surface is no longer under the pixel. This can be seen near the
silhouette of the globe in Figure 3.

In these situations, it is preferable to use a different starting point
for each of the two iterative searches. Specifically, we initialize the
search in one I-frame using the velocity vector retrieved from the
opposing I-frame:

p′t,0 = pt+α + αV bt+1[pt+α] , (16)

p′t+1,0 = pt+α + (1− α)V ft [pt+α] . (17)

This avoids having the search initially miss the object and allows
converging to the proper displacement. We follow the same iterative
procedure described previously with these alternative starting points.

Latest-frame initialization Another useful observation is that for
all but the first B-frame within a single interval, we can exploit the
scene’s natural temporal coherence and initialize the search at each
pixel with the result di from the previous B-frame. Note, however,
that the offset di must be scaled according to α in order to account
for the elapsed time between the neighboring B-frames.

In this case, the initialization of the forward search becomes:

pt,0 = pt+α − df0 , with df0 =
α

α′
d′fi , (18)

where d′fi is the offset computed in the previous B-frame at
time t+ α′. The initialization of the backward search is similar:

pt+1,0 = pt+α − db0 , with db0 =
1− α
1− α′ d

′b
i , (19)
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Figure 4: Upsampling a scene with fast moving thin geometry using:
(a) Linear blending; (b) Image-based interpolation; (c) Image-based
interpolation on the entire scene and scene-assisted interpolation on
the blades; (d) Image-based interpolation on the entire scene except
the blades and standard rendering of the blades. The error images
in the last row use the same color map as in Figure 7–9.

where d′bi is the offset computed in the previous B-frame at
time t+ α′. To obtain even better results, we consider all of the
offsets within a small fixed neighborhood around the pixel and use
whichever has the smallest depth. This proved to be particularly
helpful near depth discontinuities. For example, consider the pixels
near the north pole of the globe in Figure 3. Using motion vectors
from nearby pixels allows the algorithm to “find” the globe in previ-
ous frames, and thus initialize the search using a motion vector that
is consistent with the underlying motion of this object.

6 Limitations and interoperability

Although our geometry- and image-based algorithms generate high
quality output for a wide range of practical cases (see Section 9),
there are scenes for which they may produce unacceptable errors.
As identified by early work on reprojection [Nehab et al. 2007],
dynamic shading effects such as highlights, shadows, transparency,
and reflections can lead to signals that move rapidly relative to
object surfaces, and any such drastic motions may lead to popping
artifacts in the shading signal with sample-and-hold extrapolation.
On the other hand, since our approach interpolates between two
I-frames it produces linearly blended shading results, which are far
less objectionable (see the comparison in Section 9).
In addition, our image-based algorithm is prone to make errors in the
interpolated B-frames wherever the local search fails to compute a
correct correspondence between I-frames. Although these cases are
normally rare, they may become noticeable on thin and fast-moving
geometry like the windmill blades in Figure 4.
An important benefit of our interpolation techniques is that they
can be used together and can even be integrated with traditional
rendering. Figure 4 illustrates this type of interoperability. Our
image-based reprojection algorithm struggles to properly track and
interpolate the motion of the thin windmill blades (Figure 4(b)).
However, it is possible to perform an additional scene-assisted re-
projection pass on just the blades to patch the missing pixels in
the image-based interpolated frame (Figure 4(c)). Here the scene
depth generated by the image-based pass is stored in the Z-buffer,
which is then used in the scene-assisted pass to ensure correct depth
culling. The I-frames are shared between the two approaches and
there is no additional storage overhead. Using the scene-assisted
approach for only the thin geometry helps to reduce the amount
of geometry processing overhead. Note that the scene shown in

Figure 5: The partitioned computation of the I-frame It takes place
within the time interval [t− 2 + 1

n , t− 1 + 1
n ]. That I-frame gets

reprojected into the B-frames in the interval (t− 1, t+ 1).
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Figure 6: Analysis of lag under different rendering scenarios: stan-
dard double-buffering and a 1-frame render-ahead queue (or flip-
queue). Additional lag introduced by the partitioned variant is
only n−1

n time steps in the former, and vanishes in the latter.

Figure 4 demonstrates a rather challenging case with some “double
miss” regions behind the moving blades. Our image-space algorithm
attempts to find the closest patch for these regions, which may lead
to some visual error in shading (see the error image in Figure 4(c)).
Fortunately, this issue can be avoided by applying image-space in-
terpolation only on the scene elements behind the blades and then
performing conventional rendering on the blades, using the same
Z-buffer bridging approach described above (Figure 4(d)). The main
difference here is that the I-frames contain no fast moving thin ele-
ments, thereby preventing the complex visibility changes that cause
double misses.

7 Partitioned rendering and lag
Partitioned rendering The expensive computation of I-frames
(relative to the cost of B-frames) results in uneven rendering load.
To address this problem, we partition the computation of It over the
several consecutive B-frames in the interval [t− 2 + 1

n , t− 1 + 1
n ],

as shown in Figure 5. The rendering of It must be completed by
time t − 1 + 1

n because it is needed for the rendering of that B-
frame. Amortization is achieved by partitioning the scene rendering
tasks as evenly as possible and interleaving these tasks with the
rendering of B-frames. This process is application-dependent and
may require profiling the cost of all render tasks in a frame. In a
modern game engine which typically issues hundreds to thousands
of draw calls, amortization can be achieved by dividing the draw
calls into groups with roughly uniform render cost, launching each
group in individual I- and B-frames and accumulating the results on
the appropriate render targets. This is also compatible with deferred
renderers in which small chunks of post-processing tasks dominate
the entire shading cost.
With more flexible hardware and/or drivers, it may be possible to
render several B-frames consecutively into a queue of framebuffers,
which could then be sent asynchronously to the display. Scene
partitioning would then become unnecessary.
Analysis of lag In order to illustrate the additional lag introduced
by our method, we examine two standard scenarios in Figure 6.



In both cases, we assume that rendering an I-frame takes slightly
less than one time step, and that vertical synchronization (VSync)
is enabled. The vertical axis represents animation time, the time
at which input was gathered and the command buffer is sent to
the graphics card for rendering. In contrast, the horizontal axis
represents display time, the time at which the frame corresponding
to a certain animation time is shown to the user. We now analyze the
additional lag, relative to standard rendering, that is introduced by
bidirectional reprojection, using the partitioned rendering strategy
described above.

When double-buffering is used, any feedback concerning events in
the interval [1, 2) can only contribute to rendering after the refresh
at b, since the GPU is busy before that (figure shows the worst
case). Rendering completes right before c and the frame depicting
animation time 1 (in blue) is traditionally shown to the user at time c.
In contrast, our method presents the first B-frame (in green) that
combines information from the frames depicting animation times 1
and 2 at display time c. After n − 1 B-frames, we finally show
the I-frame (in red) for animation time 1 at display time d. The
additional lag is therefore n−1

n time steps.

A common alternative that is also widely employed in the industry
is to use a 1–3 frame render-ahead queue provided by the graphics
driver in order to maintain more stable framerates. Interestingly,
when a 1-frame render ahead queue is used in conjunction with our
approach, the additional lag due to our method vanishes. Traditional
rendering has to wait for an entire additional I-frame to finish render-
ing in about one time step before it can display the frame showing
animation time 1 at e. Since we can render B-frames quickly, our
method waits only an additional 1

n . Therefore, both methods present
the same information at time e, i.e., there is no additional lag.

Given this analysis, we should expect the amount of lag perceived
by users exposed to our method to be similar to what they perceive
in a traditional setting. Indeed, results of the user study we de-
scribe in Section 8 support this claim. Another concern is whether
the B-frames really represent an intermediate animation time, as
shown in Figure 6. We believe so, since both motion and colors are
interpolated. Our user study also supports this claim.

8 User study

In this section, we analyze the effects on user performance and expe-
rience of the tradeoff between the higher framerates and increased
latency associated with our technique. Although smoother anima-
tions allow users to better track object motion—thereby helping with
interactive tasks—increasing feedback latency may well counteract
these gains by forcing users to act according to longer predictions
into future motion. To answer such questions, we conducted a user
study in which we measured the performance and preferences of a
group of subjects interacting with a custom-made game of skill.

Game design The game shows a number of red and green spheres
falling downward, while bouncing against each other and against
the bottom of the screen. Each game match lasts for 45 seconds.
The goal in each match is to click over as many green circles as
possible, while at the same time avoiding red circles and ineffective
clicks. Circles disappear when clicked. We used this simple action
game that requires reflex skills because rendering latency can be a
hindrance in this scenario.

The game is played in 7 different rendering modes. The first three are
traditional rendering modes at 60, 30, and 15fps. Three additional
modes render at 60fps, but artificially introduce increasing amounts
of lag: 50ms, 100ms, and 200ms. The remaining mode implements
our bidirectional reprojection technique with partitioned rendering
and upsampling from 15 to 60fps. The idea is that using such a low
framerate as a starting point should help reveal any effect of lag.

Hypotheses The important hypothesis here is that the lag due
to our method will not cause the player’s objective performance
to suffer relative to standard 15fps rendering. Any improvements
would be welcome, but certainly unnecessary given our assumption
that 15fps is the best that can be achieved without our technique.
Naturally, we also hypothesized that the subjective assessment would
show that users generally prefer the smoother experience provided
by our method when compared against standard 15fps rendering.
The study Subjects were 33 predominantly male graduate and
undergraduate students who accepted taking part in the study when
offered compensation (chocolate) or the chance of winning a prize
(a fancy flash-memory drive).
Gaming session Each subject played 21 matches, divided into
two rounds. The first round, containing 7 matches (one in each
mode), was used to expose users to each game mode in random
order. No scores were recorded. Measurements were recorded
during the second round, which contained 14 matches (two in each
mode), presented in random order.
For each match, we recorded the number of green, red, and missed
clicks. These results allow us to measure objective performance
under different rendering modes.
After each match, participants were asked to rate their agreement
with a variety of statements, on a scale from 1 (strongly disagree) to 7
(strongly agree). The statements were “I enjoyed playing this game,”
“This game was difficult to play,” “This game was responsive to
my input,” and “The animation was smooth.” These measurements
allow us to assess subjective preferences.
Results We ran repeated-measures ANOVAs to examine dif-
ferences between rendering modes, and they were all significant
(p < .001)1. We then ran simple contrasts to compare each mode
against our method. Results can be seen in Table 2, and are summa-
rized below.
Objective measures
• Green and red spheres hit. Comparing our method against 15fps

did not produce statistically significant results (F (1, 32) = .10,
p = .75)2. Users performed better in the 60fps, 30fps, and 50ms
modes, and performed worse when playing with 100ms and
200ms of lag.

• Misses (clicks over the background). Subjects made fewer
useless clicks when playing with our method than 15fps, 100ms,
and 200ms of lag. They made even fewer mistakes when playing
the 60 and 30fps modes. Results of 50ms of lag were only
marginally better (p = .058).

Subjective measures

• I enjoyed playing this game. Although the favorite game was
the standard 60fps, participants indeed reported enjoying our
method more than 15fps, 100ms lag, and 200ms lag. Com-
parisons against 30fps and 50ms of lag were not statistically
significant.

• This game was difficult to play. Participants felt that our method
was easier to play than 15fps and 200ms lag, but thought 60fps
and 30fps were even easier. Comparisons against 50ms and
100ms lags were not statistically significant.

• This game was responsive to my input. We were unable to
differentiate statistically between the perceived responsiveness
of our method and 15fps (as we hoped for) or 100ms of lag.
Subjects thought our mode was more responsive than 200ms of
lag, but less responsive than 50ms of lag, 60fps, 30fps (the latter
two as expected).

1We consider a result statistically significant whenever p < .05.
2We will not report the remaining F values in the interest of brevity.



Table 2: Results of the user study. We report means (M) and standard deviations (SD) for each rendering mode, and p values for each simple
contrast. Mean figures marked in red compare favorably against our method. On the other hand, our method outperforms those marked in blue.
Unmarked mean values are not statistically different from the results of our method (p > .05 ) according to the simple contrasts.

Mode Ours 60fps (infeasible) 30fps (infeasible) 15fps (feasible) 50ms lag 100ms lag 200ms lag

Statistics M SD M SD p M SD p M SD p M SD p M SD p M SD p

Green hits 31.64 7.37 43.79 11.07 .000 41.65 9.86 .000 31.89 6.82 .754 35.47 7.24 .000 29.85 6.98 .045 24.24 5.72 .000
Red hits 3.44 2.91 1.92 1.53 .001 2.20 1.76 .003 3.32 1.75 .818 3.11 2.84 .345 4.33 2.78 .018 6.68 3.55 .000
Misses 22.01 1.45 15.68 8.34 .000 19.32 9.40 .006 25.42 12.63 .010 20.38 10.74 .058 25.11 13.73 .007 31.59 17.16 .000

Enjoy 4.38 1.14 5.42 1.15 .000 4.65 1.07 .107 2.61 1.18 .000 4.47 1.08 .589 3.77 1.01 .000 2.88 .977 .000
Difficult 4.26 1.01 3.24 1.29 .000 3.85 1.09 .010 4.80 1.27 .019 4.00 1.05 .114 4.58 1.17 .090 5.00 1.05 .002
Responsive 4.03 1.09 5.74 1.08 .000 5.18 .98 .000 3.71 1.25 .139 4.59 1.07 .013 3.68 1.27 .097 2.45 1.19 .000
Smooth 5.36 1.22 5.67 1.24 .074 3.71 1.25 .000 1.80 .90 .000 5.38 1.21 .922 5.06 1.31 .096 4.83 1.19 .006

Table 3: Breakdown of B-frame average rendering times (in millisec-
onds) at 1024× 768 for each of the three test scenes. Each B-frame
rendering cycle first renders an allotted partition of an I-frame as
described in section 7 (“Render”), and then performs bidirectional
reprojection to interpolate its adjacent I-frames (“Interp”).

Scene Original Scene-Assisted Image-Based

Render Interp Total Render Interp Total

Walking 67.0 20.0 3.3 23.3 23.1 2.6 25.7
Terrain 126.6 33.0 87.9 120.9 42.4 2.2 44.6
Head 28.3 7.6 0.8 8.4 7.9 2.0 9.9

• The animation was smooth. Subjects rated our method as produc-
ing smoother animations than both 30fps and 15fps (as expected).
Interestingly, users also preferred our method when compared
with 200ms lag, probably out of frustration with the large amount
of lag. Comparisons against 60fps, 50ms, and 100ms of lag were
not statistically significant.

Discussion Our method did in fact fair slightly better than 15fps
in objective measurements. Subjective measures were more salient,
and showed significant favor toward our method. Finally, as far
as perception of lag is concerned, the experiments showed that
our method is positioned somewhere between 50ms and 100ms.
Recall that 60fps and 30fps are not viable alternatives under our
assumptions, since our computational budget only allows for 15fps.
This is why our method is advantageous.
Given that the effect of lag would be even smaller when upsampling
from higher framerates (say, from 30fps to 60fps), we are confident
our technique would be even more suitable for these scenarios.
The additional lag present in bidirectional reprojection with double-
buffering has a two-fold effect in a first- or third-person shooter
game. Not only are the scene elements affected by the display lag,
but so is the aiming action. Although the additional lag is small, this
may potentially make it more challenging to aim in some fast action
games that require instantaneous response to abrupt target moves.
Our user study does not explore this aspect. We believe such effects
should be evaluated on a case-by-case basis.

9 Results

In this section we discuss different usage scenarios for bidirectional
reprojection and analyze their quality/speed tradeoffs. Our results
were generated using an Intel Core Duo 3GHz CPU with 2GB of
RAM and an NVIDIA GeForce 8800 GTX graphics card.
Figures 7–10 present results for both scene-assisted and image-
based bidirectional reprojection for several different scenes. For
each scene, we compared our approach with two variants of tradi-
tional reprojection: one that reshades disoccluded regions (i.e., it
reshades cache misses) and one that doesn’t. Traditional reprojec-
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Figure 7: Results of our algorithm on the walking scene. The color
of each plot lines matches the inset frame of the corresponding
method. The closeups show error images.

tion with reshading can either be performed in a single pass or in
multiple passes that take advantage of early-Z culling [Sitthi-amorn
et al. 2008a]. We always used whichever method was fastest for
the given scene (single-pass for the vertex-bound terrain scene and
multi-pass for the walking scene). We also show comparisons with
naive linear blending, which causes clear ghosting artifacts. For
each result, we show graphs measuring rendering time and quality
(in terms of SSIM [Wang et al. 2004]) compared to the reference
images over a given animation sequence. We also show close-ups
and difference images for an intermediate B-frame. Images for all
three intermediate B-frames It+0.25, It+0.5, and It+0.75 along with
their MSE error graphs are available as supplemental material. Note
that one out of every four frames is an I-frame and therefore has
no error. Hence a periodic pattern is visible in the quality measure-
ment graphs. Note that the graphs are displayed with respect to wall
clock time. Therefore, the temporal locations of the I-frames in the
different techniques are not synchronized due to framerate differ-
ences. However, for the image comparisons, we did synchronize
the temporal locations to provide the fairest comparison of visual
quality.

In some test scenes, partitioned rendering achieved a more stable



framerate than others (see scenario descriptions below). Neverthe-
less, even in the scenes where a perfectly uniform amortization is not
achievable, the rendering time of each B-frame using our approach
is substantially faster than reshading the scene anew.

Table 3 shows a breakdown of time taken at each B-frame. Note that
the time for rendering and shading the allotted portion of an I-frame
(as described in Section 7) is the dominating cost. The interpola-
tion and display of the B-frame using either geometry-assisted or
image-based reprojection is very fast. The exception is the terrain
scene, which is heavily vertex bound, therefore making geometry-
assisted reprojection infeasible. The image-based interpolation is a
screen-space technique and therefore is independent of geometric
scene complexity. It takes just 2-3 milliseconds to interpolate and
display the B-frame. Note that the total time to render an I-frame
using partitioned rendering is slightly larger than using traditional
rendering, due to additional overdraw and the overhead of issuing
draw calls with instancing. The Render time of the image-based
method also includes the time for generating motion flow buffers,
hence they are slightly larger than that of the scene-assisted method.

Next we describe each of these scenes in greater detail. Please refer
to the supplemental video for animated renderings of these results.

Fill-bound scenes The walking scene of Figure 7 is an example
of a fill-bound scene with characters moving over a floor shaded
by an expensive procedural noise function. Fill-bound scenes are
common in real-time applications (e.g., computer games), and bidi-
rectional reprojection significantly reduces their rendering cost by
reducing the number of expensive pixels that need to be processed.
The bottom row of Figure 7 shows quality and performance results
of bidirectional reprojection for a representative animation segment.
Note that it is nearly 3× faster than shading the scene anew while
producing high quality results. Even with severe disocclusion, it is
clear from the inset difference images that our image-based tech-
nique is able to properly reproject the samples without any aid from
the scene geometry. The results are only slightly inferior to our
scene-assisted technique. Since our methods do not reshade any
pixel in the intermediate frames, they are nearly as fast as the low-
quality naive linear blending. Most of the cost in these frames comes
from the amortized shading of the I-frames (the characters were
uniformly partitioned for amortized rendering). Using traditional
single-direction reprojection results in cache misses for every dis-
occluded region from the previous I-frame. Therefore, it produces
significantly worse results unless the pixels are shaded anew, in
which case performance deteriorates significantly.

Vertex-bound scenes For large meshes, such as the 1M-triangle
terrain scene of Figure 8, most of the rendering budget is consumed
by vertex processing. For these types of scenes, we can also provide
a framerate improvement when using the image-based interpola-
tion approach, which achieves nearly a 3× speedup for the terrain.
Note that the errors are higher in this scene due to the use of a
high-frequency “noisy” pixel shader. In practice, however, these
differences are indistinguishable in the real-time animation (see sup-
plemental video), and such shaders present no problems with our
bidirectional reprojection framework. With our technique, all vertex
processing is only performed when rendering the I-frames rather
than for all frames in the animation. For this example, the terrain
is partitioned into a square grid of cells for amortized rendering.
Since the bottleneck is in vertex processing, both our scene-assisted
approach and traditional single-direction reprojection with reshading
on cache misses are slow and therefore not applicable. It is interest-
ing to note that, when using an inexpensive pixel shader as in this
example, the scene could be shaded anew at each B-frame by simply
computing and reprojecting the pixel shader inputs (e.g., surface
normal and texture coordinates) rather than the final color. The B-
frames can then shade these pixels with dynamic lighting conditions
without incurring the expensive additional vertex processing.
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Figure 8: Results of our algorithm on the terrain scene. The lines
in the plots are colored according to the color of the frame around
the insets of the corresponding method.
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Figure 9: Results of our algorithm on the NVIDIA human head
scene. The lines in the plots are colored according to the color of
the frame around the insets of the corresponding method.

Multi-pass rendering effects Many computer graphics rendering
effects require multiple rendering passes to intermediate temporary
textures prior to generating the final rendered result. The NVIDIA
human head example in the Figure 9 is such an example. It uses
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Figure 10: Results of our algorithm on the walking scene with
motion blur.

a sum-of-Gaussians formulation of subsurface scattering which is
computed in texture space using a series of render-to-texture passes
(Refer to [d’Eon and Luebke 2007] for details.) The key advantage
of bidirectional reprojection in such multi-pass scenes is that since
it does not reshade on a cache miss, none of the intermediate passes
needs to be rendered at each B-frame. They are only needed when
shading the I-frames. Therefore, traditional single-direction repro-
jection with reshading is not suitable, and moreover single-direction
reprojection without reshading is unable to properly handle disoc-
cluded regions. For this example, the more accurate motion flow
from the scene-assisted approach yields results that are a bit better
than the image-based method. The rendering costs are similar since
geometry processing is not a bottleneck in this scene.

Motion blur Our technique can also be used to render scenes with
motion blur. B-frames immediately before and after a given I-frame
are composited together to generate a motion-blurred scene with
little added cost. We use the walking scene again for this example,
although using a different animation segment. Accumulating ten B-
frames per I-frame (Figure 10), we achieve a 5× speedup relative to
brute-force, with negligible quality loss. The choice between using
scene-assisted and image-based interpolation represents a (smaller)
tradeoff between speed and quality in this case, as illustrated by
these graphs. Single-direction reprojection with reshading achieves
better results, but is significantly slower since it has to reshade on
cache misses. Single-direction reprojection without reshading is fast,
but again suffers from significant artifacts at disoccluded regions.

Image-based reprojection error analysis There are two poten-
tial sources of error in our imaged-based reprojection technique. One
is the error Elin due to the assumption that surface points follow
linear trajectories between I-frames. To measure Elin, we can use
the motion vectors between two I-frames to compute where each
I-frame pixel would appear in a B-frame (under the linear motion
assumption) and compare it with its exact position, which can be
obtained with scene-assisted reprojection. This was the procedure
followed to generate the results in Figure 11 (a). For the challenging
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Figure 11: Reprojection error in the head and the walking scene: (a)
due to the linear motion assumption, and (b) in the result obtained
with our image-based iterative searching algorithm. Both errors
measured in the unit of a pixel size. The table shows the percentage
statistics of different error range.

walking scene, which contains fast nonlinear animation and camera
rotation, Elin is below 0.5 pixels everywhere, and is typically much
smaller than this amount. Similar results apply to the human head
scene. We conclude from these results that Elin is not a significant
source of error.

The remaining source of error is our iterative search strategy, which
may fail to converge to the correct position under our linear assump-
tion. Since there is no ground-truth in this case, we cannot in general
isolate this source of error. Instead, we measure the total reprojection
errorEtotal, which combines the influence ofElin with the potential
failure of our iterative search. To obtain Etotal, we measure the dis-
tance between the correspondences the iterative search finds for each
B-frame pixel in the I-frames and the ground-truth correspondences
reported by the scene-assisted method. Results of this analysis are
shown in Figure 11 (b). Etotal is very small except near silhouettes,
where correspondences may not exist and where depth discontinu-
ities interfere with our bilinear reconstruction kernel. (These issues
affect even the scene-assisted method and traditional reverse repro-
jection.) To analyze the error more carefully, we report statistics
for Etotal over all pixels (Eall

total) and also restricted to pixels whose
correspondences actually exist (Ehit

total). Note the significant drop
in Ehit

total relative to Eall
total.

Finally, note that in addition to being very small, errors are hardly
noticeable at high frame rates, as seen in the supplemental video.
Also, the error in the interior regions is locally consistent, which
prevents visible distortions of detailed textures (see Figure 7).

Improved shading interpolation Traditional reverse reprojec-
tion only reuses the shaded value from an earlier time frame. This
“sample and hold” strategy leads to larger shading errors in the pres-
ence of dynamic lighting and shadows as shown in Figure 12. In
contrast, bidirectional reprojection always reshades the entire scene
anew for each I-frame and temporally interpolates at the B-frames.
As a result, it not only reduces the shading error, but also provides a
smoother animation with less popping artifacts. The supplemental
video contains an interactive version of this comparison.
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Figure 12: Comparison of our interpolation method with traditional
single-directional reprojection in the presence of dynamic lighting
and shadow.

10 Conclusion

We have introduced a new real-time technique for temporally upsam-
pling rendered image sequences. As compared to single-reprojection
methods, our approach reduces artifacts due to disocclusion by us-
ing information from both the previous and the following rendered
frames. We presented two algorithms to transfer the information
from these I-frames to the interpolated frames. One computes the
correspondence robustly using geometry reprojection. The other
uses an image-space search. We also described how to amortize
the computation of these I-frames over multiple rendered frames,
and presented results of having successfully applied our method
to significantly speed-up rendering of scenes that are fill-bound,
vertex-bound, and contain motion blur.

For future work, we would like to consider automatically partitioning
the scene for amortization using a measure of expected rendering
cost for the scene partitions and load balancing across frames. We
also would like to consider a multi-layer extension of the approach
to handle semi-transparent geometry.
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