
Volume 0 (1981), Number 0 pp. 1–12 COMPUTER GRAPHICS forum

An Adaptive Multigrid Solver
for Applications in Computer Graphics

Misha Kazhdan1 and Hugues Hoppe2

1Johns Hopkins University 2Google Inc.

Abstract
A key processing step in numerous computer graphics applications is the solution of a linear system discretized over a spatial
domain. Often, the linear system can be represented using an adaptive domain tessellation, either because the solution will only
be sampled sparsely, or because the solution is known to be “interesting” (e.g. high-frequency) only in localized regions. In this
work, we propose an adaptive, finite-elements, multigrid solver capable of efficiently solving such linear systems. Our solver is
designed to be general-purpose, supporting finite-elements of different degrees, across different dimensions, and supporting both
integrated and pointwise constraints. We demonstrate the efficacy of our solver in applications including surface reconstruction,
image stitching, and Euclidean Distance Transform calculation.

CCS Concepts
•Computing methodologies → Computer graphics;

1. Introduction

Solving linear systems is a fundamental step in numerous applica-
tions in image- and geometry-processing. For many such applica-
tions, the solution does not need to be fully resolved everywhere –
either because the solution is only evaluated sparsely, or because the
solution is low-frequency outside of a sparse region. For example, in
surface reconstruction applications, the implicit function is only eval-
uated near the input samples. And in image-stitching applications,
the correction is evaluated everywhere but is only high-frequency
near the seams.

Previous works have addressed this problem using a quadtree/oc-
tree to adapt the discretization, and using finite-differences to define
a linear system over the adaptively discretized domain. In this work,
we extend these approaches in two ways: (1) We describe a finite-
elements formulation supporting general PDEs, and (2) we leverage
the hierarchical structure of the quadtree/octree to design an efficient
multigrid solver.

Starting with the hierarchical solver presented by [KH13] for
solving the screened-Poisson equation in 3D, we generalize the
solver in several ways, including support for general symmetric
positive-definite (SPD) systems:
• in spaces of arbitrary dimension,
• discretized using finite-elements of arbitrary degree,
• involving arbitrary function derivatives,
• with both pointwise and integrated constraints.
We also generalize the solver to use a standard V-cycle solver, with
temporally-blocked Gauss-Seidel relaxation for better runtime per-
formance.

Together, these generalizations provide an efficient and general-
purpose solver capable of solving a large class of linear systems in
different dimensions. We demonstrate the effectiveness of the solver
in applications including surface reconstruction (using both the
Laplacian and bi-Laplacian), image-stitching (using mixed-degree
finite-elements), and the computation of an approximate Euclidean
Distance Transform. In each application we have found that our
general-purpose solver outperforms state-of-the-art methods, pro-
viding a solution in less time and less memory.

We begin our discussion by reviewing related work on adapted
solvers in general (§2), and then focusing on the Poisson Reconstruc-
tion solver (§3). We then describe our generalization of the Poisson
Reconstruction solver (§4) and present a method for handling the
ringing that occurs due to the abrupt changes in resolution (§5). We
demonstrate the utility of our solver in several graphics applica-
tions (§6) and conclude by summarizing our work and pointing to
potential directions for future research (§7).

2. Related work

Much of the related work on adaptive solvers has focused on the
problem of solving the Poisson equation in three-dimensional fluid
simulations in order to enforce the incompressibility conditions (e.g.
[Pop03, LGF04, FOK05, CGFO06]), though applications in other
areas have included the solution of the Poisson equation for large im-
age stitching [Aga07] and the solution of Laplacian and bi-Laplacian
systems for surface reconstruction [KBH06,MGD∗10,CT11,KH13].
In these contexts, solving over a regular grid is impractical as either
the grid needs to be made too coarse to capture the fine details

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

M. Kazhdan & H. Hoppe / An Adaptive Multigrid Solver

or the linear system becomes too large to be solved in practical
time/memory.

Perhaps the most direct approach is to use tetrahedral meshes to
tessellate space [FOK05, KFCO06, CGFO06, BXH10, MGD∗10].
Since the size of the tets can adapt to the regions of interest, the size
of the system can be significantly reduced. (E.g. adapting to a 2-
manifold in 3-space reduces the complexity from O(N) to O(N2/3),
with N the number of cells in a regular tessellation.) A further
advantage of using tetrahedral meshes is that the faces of the tets can
be aligned to a triangle mesh, making it easier to enforce boundary
conditions. (Later work by Batty et al. [BXH10] shows that this
is not a requirement, enabling less remeshing for simulations with
dynamic boundaries.)

In the context of shallow water simulations, tall cells have
been used to discretize the linear system over a regular 2D grid
[KM90, OH95]. In addition to reducing the dimensionality of the
linear system, this approach has the advantage of using a regu-
lar grid as a data-structure, reducing neighbor lookup to simple
indexing (and thereby enabling better memory utilization). This
approach has been extended to shallow water simulations over gen-
eral surfaces [WMT07] and has been further adapted using hybrid
2D/3D techniques that partition the tall cells in regions of inter-
est [IGLF06,TRS06,CM11]. However, a limitation of this approach
is that it does not generalize to systems in which adaptivity is desired
along multiple axes.

A more general strategy is to partition space using an adaptive
octree [Pop03, LGF04, KBH06, CT11, KH13, Bat17]. Similar to
tetrahedral meshing, these approaches allow the discretization to
adapt to regions of interest, thereby reducing the dimensionality
of the system. Additionally, the semi-regular structure of the tree
facilitates neighbor look up through efficient data structures [Sam90]
and Z-curve hashing [WS93].

Recent work has also leveraged an octree hierarchy to attain an ef-
ficient multigrid solver for the Poisson equation [SABS14,FWD14],
defining a nesting set of sub-octrees by successively trimming off
nodes at finer resolutions of the tree. Setaluri et al. follow the finite-
volumes discretization of [LGF04] to define the Laplace operator
while Ferstl et al. use first-order B-splines to define a finite-elements
discretization. Both approaches are restricted to the solution of the
Laplace operator – the finite-volumes discretization does not extend
to higher order derivatives and the finite-elements discretization re-
lies on the interpolatory property of first-order B-splines to remove
“hanging” vertices.

In contrast, the earlier work of Kazhdan et al. [KBH06] (and the
follow-on work by Kazhdan and Hoppe [KH13]) uses a more general
finite-elements formulation to define a multigrid solver, allowing for
both pointwise and integrated constraints and supporting derivatives
of arbitrary degree. We review this approach in the next section.

3. The Poisson Reconstruction Solver

The solver described by Kazhdan et al. [KBH06] (and extended
in [KH13]) is designed to reconstruct a watertight surface from an
oriented point-set. The authors reduce the problem of surface recon-
struction to the solution of a Poisson equation whose right-hand-side

encodes the divergence of the surface normal field, showing that
the solution gives the coefficients of the indicator function of the
shape’s interior. To do this, the authors (1) adapt an octree to the
points, (2) define a function space over the octree, and (3) solve a
hierarchical system to obtain the indicator function.

3.1. Finite Elements

Given an octreeO, the authors define a function space by associating
a second-order B-spline with every octree node. Specifically, given
a node o ∈ O, with left/bottom/back corner co and width wo, the
authors set Φ

2
o : R3→ R to be the trivariate second-order B-spline

centered and scaled with o:

Φ
2
o(q) = Φ

2
(

qx− cx
o

wo

)
·Φ2

(
qy− cy

o

wo

)
·Φ2

(
qz− cz

o
wo

)
with Φ

2 : R→ R the univariate second-order B-spline:

Φ
2(s) =

1
2 + s+ 1

2 s2 if s ∈ [−1,0]
1
2 + s− s2 if s ∈ [0,1]

2−2s+ 1
2 s2 if s ∈ [1,2]

0 otherwise.

Using these functions, the Laplacian matrix, L, is discretized by
setting the coefficient corresponding to the pair of nodes o, õ ∈O to
be the integral:

Lo,õ =
∫
[0,1]3

∆Φ
2
o(q) ·Φ2

õ(q) dq.

Note that because the functions {Φo} are compactly supported, the
matrix L will be sparse, with Lo,õ = 0 whenever the supports of Φo
and Φõ do not overlap.

Kazhdan and Hoppe [KH13] extend the solver to support point-
wise interpolation. This is done by augmenting the Laplacian with a
screening term:

So,õ = ∑
p∈P

ω(p) ·Φ2
o(p) ·Φ2

õ(p)

where P is the point-set and ω : P → R≥0 is a weighting function
assigning an importance to each point constraint.

3.2. Multigrid

To solve the linear system MX = B, with X the solution coeffi-
cients, B the right-hand side encoding the divergence of the normal
field, and M = L (or M = L+ S in the screened system), Kazh-
dan et al. [KBH06] use the octree hierarchy to define a (cascadic)
multigrid solver. Specifically, given the target number of relaxation
iterations, ν, the solution X is obtained using the LogLinearCas-
cadicSolver[2006] algorithm.

The algorithm performs a coarse-to-fine iteration through the
levels of the tree (line 2), adjusts the constraints at the given level
to discount those constraints met at coarser resolutions (line 3), and
refines the solution (lines 4 and 5).

Here Λ is the depth of the octree, X` (resp. B`) is the sub-vector
of X (resp. B) indexed by nodes at level `, M`

˜̀ is the sub-matrix of

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

M. Kazhdan & H. Hoppe / An Adaptive Multigrid Solver

LogLinearCascadicSolver[2006](M , B , ν)

1 X ← 0 initialize
2 for ` ∈ {0, . . . ,Λ−1}
3 for ˜̀∈ {0, . . . , `−1}: B`← B`−M`

˜̀(X
˜̀
) adjust

4 if(` 6= 0) X`← Relax(M`
` , X` , B` , ν) relax

5 else X`← Solve(M`
` , B`) solve

6 return X

the (screened) Laplacian with columns indexed by nodes at level
` and rows indexed by the nodes at level ˜̀, Relax is the operator
performing ν iterations of a conjugate-gradients solver, and Solve is
an operator computing the exact solution of a symmetric, positive,
semi-definite, linear system.

The hierarchical solver is made more efficient in the work of
Kazhdan and Hoppe [KH13] who observe that while one cannot
prolong the entirety of the coarse solution without fully refining the
octree, it suffices to prolong only the part of the coarser solution
that is “overlapped” by the finer level. Specifically, defining two
nodes o and õ to be overlapped when the functions Φo and Φõ
have overlapping support, the authors propose refining the octree
so that when a node is in the tree at level `, all overlapping nodes
at level `− 1 are also in the tree. The modified cascadic solver is
summarized in the LinearCascadicSolver[2013] algorithm.

LinearCascadicSolver[2013](M , B , ν)

1 X ← 0 initialize
2 for ` ∈ {0, . . . ,Λ−1}
3 B`← B`−M`

`−1(P
`−1) adjust

4 if(` 6= 0) X`← Relax(M`
` , X` , B` , ν) relax

5 else X`← Solve(M`
` , B`) solve

6 P`← X`+P`
`−1(P

`−1) prolong
7 return X

After solving at a given level (lines 4 and 5), the algorithm up-
samples the accumulated solution from the coarser levels and com-
bines it with the solution at the current level (line 6). This way, when
adjusting the constraints at a given level only the prolongation from
the previous level needs to be considered (line 3). For an octree with
|O| nodes, this reduces the complexity of the cascadic solve from
O(|O| · log |O|) to O(|O|)

Here the prolongation operator P`
`−1 up-samples a solution at

level `−1 into a solution at level ` using the tensor-product of the
standard second-order B-spline prolongation stencil, (1

4 ,
3
4 ,

3
4 ,

1
4).

(At level ` = 0 the values M`
`−1(P

`−1) and P`
`−1(P

`−1) are as-
sumed to be zero.)

4. Generalizing the Solver

In this work we generalize the hierarchical solver from [KBH06]
and [KH13] to support the solution of a much larger class of lin-
ear systems. Specifically, we develop a solver that (1) uses finite-

elements of arbitrary degrees, (2) solves general symmetric positive
definite systems, (3) supports general integral and pointwise con-
straints, and (4) works in arbitrary dimensions. In addition, we
modify the solver to support full V-cycle iterations and to use Gauss-
Seidel relaxation.

4.1. Extending the System

4.1.1. Finite Element Degree

The solver in [KBH06] associates a trivariate second-order B-spline
to each node of the tree. We extend the formulation by supporting the
use of B-splines of any degree. This allows for trading off between
system sparsity (lower-degree) and smoothness (higher-degree). In
doing so, we also replace the prolongation stencils to conform with
the chosen degree.

Even-degree/dual elements Extending to B-splines of even-
degree is straightforward as these B-splines are centered at the
centers of grid cells.

Odd-degree/primal elements Extending to B-splines of odd-
degree is more nuanced as these B-splines are centered at the corners
of grid cells. To avoid redundant indexing, we associate each octree
node with a single B-spline, centered at the left, bottom, back corner.
We also extend the octree to partition the cube [0,2]× [0,2]× [0,2].
This ensures that our discretization has the ability to represent any
B-spline centered at a corner of a grid cell. Note that though the
new octree partitions a larger domain, integration is restricted to the
domain [0,1]× [0,1]× [0,1].

In this case, we make a distinction between the logical depth of
the tree (which is exposed to the user) and the actual depth of the
tree (which is equal to the logical depth plus one, and is used for
internal book-keeping). For the remainder of the paper, “depth” will
be understood to refer to the logical depth.

Mixed-degree elements We also support B-splines of mixed-
degree, centering these on the cells/faces/edges/vertices of the grid.
As with odd-degree B-splines, we use the left/bottom/back associa-
tion and extend the octree to partition a larger cube. For example,
using B-splines of mixed-degree D = {2,1,2}, we associate the
function Φ

D
o to the center of the bottom face of octree cell o, with:

Φ
D
o (q) = Φ

2
(

qx− cx
o

wo

)
·Φ1

(
qy− cy

o

wo

)
·Φ2

(
qz− cz

o
wo

)
where Φ

1 : R→ R is the univariate first-order B-spline:

Φ
1(s) =

1+ s if s ∈ [−1,0]
1− s if s ∈ [0,1]

0 otherwise.

The advantage of supporting mixed-degree B-splines is that par-
tial derivatives of uniform-degree B-splines can be expressed as
the linear combinations of mixed-degree B-splines. The coefficients
of these partial derivatives are given in terms of finite-differences
of the original coefficients and are naturally stored on a staggered
grid [HW65].

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

M. Kazhdan & H. Hoppe / An Adaptive Multigrid Solver

4.1.2. Prescribing a Linear System

The solver in [KBH06] (and [KH13]) defines a (screened) Poisson
equation, with coefficients expressed in terms of the integrated dot-
product of gradients (and weighted sum of the product of pointwise
evaluations). We extend this formulation to support the solution
of a more general class of linear systems. Specifically, given D =
{dx,dy,dz} – the degrees of the system B-splines along the x, y,
and z axes – we denote by D = [0,dx]× [0,dy]× [0,dz] the set of
all possible partial derivatives and support the construction of both
integrated and sampled coefficients that incorporate all bilinear
combinations of the |D| derivatives.

Integrated system We support the construction of general inte-
grated linear systems by allowing the user to prescribe any symmet-
ric, positive-semi-definite matrix, D ∈ R|D|×|D|. We then define
the associated linear system, L ∈ R|O|×|O|, by setting:

Lo,õ = ∑
(iii,ĩii)∈D×D

Diii,ĩii ·
∫
[0,1]3

∂
iii
Φ

D
o (q) ·∂ĩii

Φ
D
õ (q) dq

where for iii = {i, j,k}, we have:

∂
iii
Φ(p)≡ ∂

i

∂xi
∂

j

∂y j
∂

k

∂zk Φ(p).

Pointwise system Given a point-set P , we support the construction
of general pointwise linear systems by allowing the user to prescribe
a function DDD : P→ R|D|×|D| returning a positive-semi-definite
matrix. We then define the associated linear system, S ∈ R|O|×|O|,
by setting:

So,õ = ∑
(iii,ĩii)∈D×D

∑
p∈P

DDDiii,ĩii(p) ·∂iii
Φ

D
o (p) ·∂ĩii

Φ
D
õ (p).

4.1.3. Imposing Constraints

In [KBH06], the constraint is given in terms of the integrated prod-
ucts of the gradients of the B-splines with a vector-field describing
the normals of the point-cloud. This is extended in [KH13] to also
constrain the solution to evaluate to 0.5 at the point samples. We
extend this formulation to support the prescription of a more general
family of integrated and pointwise constraints.

Integrated constraints As above, we let D = [0,dx]× [0,dy]×
[0,dz] denote the set of all possible partial derivatives of the system
B-splines. We support the construction of general integrated con-
straints by allowing the user to prescribe the coefficients, F ∈ R|O|,
of a function with respect to B-splines of degree D̃ = {d̃x, d̃y, d̃z},
as well a matrix, M ∈ R|D|×|D̃|. Then, given an octree node o ∈O,
we increment the o-th coefficient of the constraint vector by setting:

Bo += ∑
õ∈O

Fõ · ∑
(iii,ĩii)∈D×D̃

Miii,ĩii ·
∫
[0,1]3

∂
iii
Φ

D
o (q) ·∂ĩii

Φ
D̃
õ (q) dq.

Pointwise constraints We support the construction of general
pointwise constraints by allowing the user to prescribe a function
FFF : P→ R|D|. Then, given an octree node o ∈ O, we increment the
o-th coefficient of the constraint vector by setting:

Bo += ∑
õ∈O

∑
iii∈D

∑
p∈P

FFF i(p) ·∂iii
Φ

D
õ (p).

4.1.4. Dimensionality

The solver in [KBH06] was designed for linear systems in 3D. We
extend the formulation by supporting the design of linear systems in
any dimensions.

Conceptually, this is straightforward to do because multivariate B-
splines are defined as tensor-products of univariate B-splines. Thus,
function integration and evaluation can be performed by separately
integrating/evaluating across the different dimensions and then mul-
tiplying. (Similarly, multivariate prolongation stencils are described
as the tensor-products of univariate stencils.)

We make this efficient in practice using several techniques.

m-dimensional windows We define an m-dimensional window
to be a wrapper for m-dimensional arrays of size w1× ·· · ×wm
(with wi ∈ Z≥0 a compile-time constant). The window imple-
ments functionality returning the (m−1)-dimensional slices of size
w1× . . .×wm−1 and supports recursive iteration over the window
dimensions to apply a computation kernel at the individual elements.

Neighbor lookup As most of the computation in defining and solv-
ing the linear system requires finding the neighbors of a node, we
design a neighbor-key data-structure to amortize the cost of neighbor
lookup. Given an octree O of depth Λ and given a target neighbor
windowW = [−l1,r1]×·· ·× [−lm,rm] (with, li,ri ∈ Z≥0 compile-
time constants), we define a neighbor-key to be an array of Λ win-
dows of sizeW . Since theW neighbors of a node are contained in
the children of theW neighbors of the node’s parent, we recursively
set the neighbor-key by setting the parent’s neighbors and using
those to set the neighbors of the child.

The advantage of this approach is that if we traverse the octree
in a coherent (e.g. Morton) order, the node’s parent’s neighbors
will likely have been set in a previous neighbor lookup and we will
not need to traverse to the root of the tree to compute neighbors.
Thus, the amortized cost of computing the neighbors within a fixed
window is reduced to O(1).

Template specialization As the size of the windows we use is
determined by the degrees of the B-splines, which are known at
compile-time, we implement the windowed computations using
C++ templates specifying the degrees of the B-splines along the
different axes. The templating of dimension of the system makes
it easier for the compiler to inline the nested iterations (rather than
using recursive function calls to iterate over the windows) while
the templating of the window dimensions enables loop-unrolling,
both of which improve the runtime performance. (Technically, we
use variadic templates with integer parameters: The number of
parameters defines the dimension of the Euclidean space and the
values of the parameters give the degrees along the individual axes.)

We note that with the exception of the specialization of the tem-
plate code for the case of dimension-one (to terminate the recursive
iteration over the window slices) the only code that we specialize is
the isosurface extraction, which is only implemented for 3D.

4.2. Modifying the Solver

We modify the solver in two ways. We improve the accuracy of the
solver by extending it to support a full V-cycle pass and we improve

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

M. Kazhdan & H. Hoppe / An Adaptive Multigrid Solver

the memory efficiency of the solver by replacing the conjugate-
gradients solver with a Gauss-seidel solver.

V-Cycle Solver

We extend the solver to support V-cycle iterations by adjusting the
constraints at level ` using the computed solutions at both finer and
coarser resolutions. As with the extension in [KH13], this can be
made efficient when the octree is refined so that when a node is in
the tree, all coarser overlapped nodes are also in the tree.

Algorithm VCycleSolver provides pseudo-code for a solver per-
forming n v-cycles. After relaxing the solution in the restriction
phase (line 5), the algorithm down-samples the accumulated (dual)
solution from the finer levels and combines it with the (dual) solu-
tion at the current level (line 6). Then, when computing the residual
constraint (lines 4, 7, and 11), both the finer and coarser solutions
are used to adjust the constraints. Here the restriction operator R`−1

`

is the transpose of P`
`−1.

VCycleSolver(M , B , n , ν)

1 X ,P,R← 0 initialize

2 for σ ∈ {1, . . . ,n}
// Fine-to-coarse relaxation

3 for ` ∈ {Λ−1, . . . ,1}
4 B̂`← B`−R`−M`

`−1(P
`−1) adjust

5 X`← Relax(M`
` , X` , B̂` , ν) relax

6 R`−1←M`−1
` (X`)+R`−1

` (R`) restrict
// Apply direct solve at coarsest resolution

7 B̂0← B0−R0 adjust

8 X0← Solve(M0
0 , B̂0) solve

9 P0← X0 prolong
// Coarse-to-fine relaxation

10 for ` ∈ {1, . . . ,Λ−1}
11 B̂`← B`−R`−M`

`−1(P
`−1) adjust

12 X`← Relax(M`
` , X` , B̂` , ν) relax

13 P`← X`+P`
`−1(P

`−1) prolong

14 return X

Gauss-Seidel Smoothing

We also modify the relaxation step (lines 5 and 12 of Algo-
rithm VCycleSolver) to use Gauss-Seidel iterations instead of
conjugate-gradients. This allows us to leverage temporal block-
ing [Pfe63, DHK∗00, CK11] to sequentially stream in slices of the
octree, maintaining a small working window in memory as we per-
form the relaxation. This improves cache coherence and reduces the
overall memory usage by allowing us to construct the system matrix
slice-by-slice (i.e. without ever having to store the whole matrix in
memory). We further parallelize the relaxation by using multicolor
Gauss-Seidel iterations within each slice, with the number of colors
determined by the support/degree of the finite-elements.

Figure 1: Using a regular grid to solve for the function whose gra-
dients best-fit the gradients of a depth-5 step function results in
ringing artifacts when solved at coarser depths. Using a depth-5
system (bottom right), we correctly reconstruct the step function.

5. Ringing

As the function space we use is adaptive, our approach can only
represent functions that are high-frequency where the grid is adap-
tively refined. Our initial motivation was to consider applications
which only evaluate the solution in these high-frequency regions.
However, a broader set of applications can be considered if we allow
the solution to be evaluated everywhere.

In this section, we describe the ringing problem that arises when
evaluating away from the adaptively refined regions and provide a
heuristic for resolving this problem.

5.1. Ringing in Multigrid

To motivate the problem, we consider a simple 1D case in which
we seek the function whose gradients best fit the gradients of a
depth-5 Heaviside function. (This is the function whose coefficients
are equal to 0 for the first 16 indices and equal to 1 for the second
16 indices, visualized in the bottom right of Figure 1.)

Figure 1 shows a visualization of the solutions obtained at differ-
ent resolutions. As expected, when using the function space defined
at depth 5, we reconstruct the original step function. However, at
coarser depths the function spaces can no longer reproduce the
higher-frequency components and ringing is visible.

This ringing is not a problem for standard multigrid solvers be-
cause the solution obtained at a coarser resolution is prolonged into
the finer-resolution space, where subsequent relaxations remove
the high-frequency artifacts. However, when using a solver over an
adaptive domain, not all of the solution computed at the coarser reso-
lution can be prolonged. In particular, ringing that occurs outside the

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

M. Kazhdan & H. Hoppe / An Adaptive Multigrid Solver

support of the finer functions is not “seen” at the finer resolutions
and cannot be removed. Figure 2 (left) shows a visualization of this
type of ringing, when the tree is only refined near the discontinuity
in the step function.

5.2. Adapted Successive Under-Relaxation

We address the ringing problem in two steps. First, we use a V-cycle
solver, initially performing fine-to-coarse relaxations (restriction)
and then performing coarse-to-fine relaxations (prolongation). Our
goal in relaxing at the higher frequencies first is to resolve the
high-frequency components of the constraints so that the restricted
residual represents a smoother function, and can be solved at coarser
resolutions without introducing ringing.

On its own, we have found that using a V-cycle solver produces
results that are worse than those obtained using a strictly coarse-to-
fine (cascadic) solver because the use of an adaptive grid introduces
Dirichlet-like constraints at the higher-frequencies. (Using an adap-
tive solver can be thought of as using a regular solver but fixing
the coefficients of nodes outside the adaptive region to zero.) To
mitigate these effects, we use adapted successive under-relaxation
in the restriction phase to down-play the contribution of nodes near
the refinement boundary.

Specifically, given a node o ∈ O at depth d, we measure the
proximity of o to the boundary by measuring the ratio of integrals:

µ(o) =
∫

Ωd Bo(p) d p∫
Ω

Bo(p) d p
,

with Bo(p) the B-spline associated with node o, Ω the working
volume, and Ω

d ⊂Ω the subset contained within nodes at depth d.
(As we are using B-splines of degree greater than zero, the support of
a B-spline extends beyond the interior of the associated node.) Here
the denominator measures the total mass of the B-spline, Bo(p),
while the numerator measures the mass contained within the depth-
d nodes, so that µ(o) = 1 for nodes interior to the adaptive region
and µ(o)< 1 for nodes near the refinement boundary.

We then proceed as with standard Gauss-Seidel, iteratively up-
dating the coefficient Xo by computing the correction term, Co, for
each node n. However, instead of adding the full correction term,
we add a fraction:

Xo← Xo +α ·µ(o)β ·Co

where the parameters α and β control the extent of the under-
relaxation as a function of the proximity to the boundary. Figure 2
(right) shows the results obtained when solving for the function
whose gradients best-fit the gradients of the depth-5 Heaviside func-
tion using adapted successive under-relaxation during the restriction
phase. As the figure shows, this heuristic effectively removes the
ringing artifacts.

6. Results

To evaluate our multigrid solver, we consider three different applica-
tions: surface reconstruction, gradient-domain image stitching, and
Euclidean Distance Transform calculation. The results described
in this section were obtained on a PC running Windows 10, with

Figure 2: Visualizations of the solutions obtained using a discretiza-
tion where the tree is only refined near the discontinuity in the step
function: Using a cascadic solver without adapted under-relaxation
the solution exhibits significant ringing (left); Using a V-cycle solver
with adapted under relaxations in the restriction phase successfully
removes the artifacts (right). Tick marks at the bottom show how the
interval is partitioned by the leaf nodes of the adaptive binary tree.

an Intel Core i7-6700HQ processor and 16 GB of RAM. We used
eight Gauss-Seidel relaxations at each hierarchy level and fixed the
under-relaxation parameters at α = 1/8 and β = 6 for all evaluations.

6.1. Surface Reconstruction

In these applications, the goal is to compute a watertight mesh that
fits an input oriented point-set. We consider two implementations,
Screened Poisson Surface Reconstruction [KH13] and the Smoothed
Signed Distance Reconstruction [CT11,CT12]. Both proceed by first
computing an implicit function discretized over an octree adapted
to the input samples, and then extracting an isosurface.

For conciseness, we provide only a small number of reconstruc-
tion visualizations in this section. For additional results, please see
Figure 9 in the supplemental.

Screened Poisson Surface Reconstruction (SPR)

This work computes the indicator function (i.e. the function that is
zero outside of the surface and one inside) using degree-two finite-
elements by solving a linear system composed of two parts: a Pois-
son system that seeks a function whose gradients match a smoothed
normal field defined by the oriented points, and a screening system
that seeks a function evaluating to 0.5 at the point samples.

As our solver extends the solver in [KH13], it too can be used for
computing the implicit function. Furthermore, because our solver
supports finite-elements systems of any degree, and since the formu-
lation of the Poisson system only requires computing first deriva-
tives, we can implement SPR using degree-one finite-elements. (To
extract a smooth isosurface, we use the gradients at the octree cor-
ners to define piecewise quadratic interpolants along the edges as
in [FKG15]. Because degree-one finite elements have derivative
discontinuities at the corners, we define the gradients by averaging
the left- and right-sided derivatives.)

Table 1, (left) compares the running time and memory usage of
our solver with the implementation provided in [Kaz13]. Comparing
the performance of the original solver with our degree-two solver,

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

M. Kazhdan & H. Hoppe / An Adaptive Multigrid Solver

Screened Poisson Reconstruction SSD Reconstruction
Original Ours (deg. 1) Ours (deg. 2) Original Ours

Points sec. MB sec. MB sec. MB sec. MB sec. MB

Angel 24 K 2 118 2 54 3 89 3 114 [4] 3 88
Bunny 354 K 18 891 13 379 19 542 34 1287 [34] 13 402
Eagle 778 K 49 1239 28 672 43 907 49 1943 [75] 26 667
Eagle† 778 K 33 731 48 923 58 2591 [82] 30 695
Tanagra 2 M 28 686 17 427 26 577 45 1418 [51] 18 404
King 2 M 57 1305 35 877 56 1331 69 2705 [111] 36 913
King† 2 M 41 950 62 1361 84 3733 [118] 42 969
Thai Statue 2 M 45 1137 28 696 43 1139 72 2310 [85] 29 842
Guinea Pig 2 M 36 933 20 479 31 617 75 1583 [64] 23 477
Guinea Pig† 2 M 24 519 36 640 80 2217 [69] 28 513
Head 3 M 41 885 23 537 35 743 69 1866 [70] 25 568
Head† 3 M 27 582 40 767 84 2563 [76] 29 609
Broccoli 3 M 71 1581 41 973 64 1134 115 3048 [124] 42 961
Broccoli† 3 M 49 1051 71 1376 131 4301 [135] 49 1027
Neptune 4 M 37 608 18 387 27 601 163 1343 [50] 19 450
Lucy 5 M 45 753 22 502 34 861 161 1725 [68] 25 629
Monk 5 M 43 778 22 499 34 770 101 1749 [70] 26 583
Monk† 5 M 28 543 39 800 142 2516 [77] 31 627
David 11 M 144 2378 77 1453 113 1750 386 5178 [230] 80 1328
Awakening 20 M 123 992 43 626 59 880 576 2871 [108] 46 684

Table 1: Comparison of running time (seconds) and memory usage (MB) for the original SPR and SSD implementations [Kaz13,CMT11] with
the implementations obtained using our adaptive solver at depth 10. Numbers in brackets give the timing for a single-threaded implementation.
†Models denoted with a dagger are reconstructed with color. As in the original implementation of SPR, our implementation of SPR and SSD
performs a single cascadic multigrid pass.

Figure 3: Comparison of reconstruction accuracy for the original SPR and SSD implementations [Kaz13, CMT11] with the implementations
obtained using our adaptive solver at depth 10. Accuracy is measured in RMS and is computed by using half of the points for reconstruction
and measuring the one-sided distance from the second half of the points to the reconstructed surface.

we see that the extension of the adaptive solver to a larger class of
linear systems does not come at the cost of slower running times or
larger memory usage. (Our implementation runs in 85% of the time
and uses 80% of the memory.)

The advantage of a general-purpose solver becomes more pro-
nounced when we compare the original implementation to the im-
plementation using degree-one finite elements. These elements have
smaller support and result in a sparser linear system. As Table 1
shows, the sparser system results in significantly improved perfor-
mance. (Our implementation runs in 55% of the time and uses 60%
of the memory.)

Figure 4 (top) shows example close-ups from the reconstructions
of the David head, using the original SPR algorithm and our imple-
mentation with degree-one and degree-two elements. Despite the

lower degree of the finite-elements, we did not find a noticeable
difference in the quality of the reconstructed surfaces when using
lower-degree elements. This is confirmed quantitatively in Figure 3
which gives the root mean squared distance from the input point
set to the reconstructed surface, and shows that the original imple-
mentation and our implementation using degree-one and degree-two
elements produce reconstructions of similar quality.

Smoothed Signed Distance Reconstruction (SSD)

This work computes an approximation to the signed Euclidean
Distance Transform (i.e. the function that gives the signed distance
from a point in space to the nearest point on the surface) using
degree-two finite-elements by solving a linear system composed
of three parts: a bi-Laplacian system that seeks a function whose

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

M. Kazhdan & H. Hoppe / An Adaptive Multigrid Solver

Figure 4: Reconstructions of David’s head (left) at depth 10, comparing the original SPR implementation [Kaz13] (top left), the SPR
implementation with our adaptive solver using degree-one elements (top center), the SPR implementation with our adaptive solver using
degree-two elements (top right), the original SSD implementation [CMT11] (bottom left), and the SSD implementation with our adaptive
solver (bottom right),

gradients are as constant as possible, a value-screening system that
seeks a function evaluating to 0 at the point samples, and a gradient-
screening system that seeks a function whose gradients agree with
the normals at the point samples.

As our solver supports systems constraining both integrals and
values of higher-order derivatives of functions, it can be extended to
support the SSD reconstruction algorithm. However, as this system
requires the computation of second-order derivatives, our implemen-
tation is constrained to use at least degree-two finite-elements.

Table 1, (right) compares the running time and memory usage
of our solver with the implementation provided in [CMT11]. As
the original implementation is single-threaded, we provide run-
ning times for our implementation with and without multithreading.
Comparing the performance of the original solver with our imple-
mentation, we see that despite the optimized implementation of
the authors, our general-purpose solver provides an implementation
with significantly improved running times and memory usage. (Our
single-threaded implementation runs in 80% of the time and uses
30% of the memory. Our multithreaded implementation runs in 30%
of the time.)

Figure 4 (bottom) shows example close-ups from the reconstruc-
tions of the David head, using the original SSD implementation and
our adaptive multigrid implementation using degree-two elements.
The figure shows that the two reconstructions are qualitatively sim-
ilar. This is verified empirically in Figure 3 which shows that the
two implementations produce reconstructions with similar quality.
(When running the implementation provided in [CMT11] we used
a value weight that was 5 times the default. We found that this
produced higher quality results in less time.)

Color Interpolation

We extend our implementation of SPR and SSD to support color in-
terpolation by constructing a color function, C : [0,1]3→ [0,256)3,
that is evaluated at the vertices of the reconstructed mesh. Our imple-
mentation follows the hierarchical push-pull approach for scattered
data interpolation [Bur88, GGSC96].

During the construction of the octree, we distribute each input
point’s color into the eight corners of the octree node containing the
point. The color is distributed using tri-linear interpolation weights
and both the weighted color and the weights themselves are accu-
mulated at the corners.

Distributing at each level of the octree, we obtain piecewise tri-
linear functions c`(p) and w`(p) giving the accumulated color and
weight at level `. At deeper levels of the tree (larger `) the functions
c` and w` provide a finer representation of the color, but are not well-
defined away from the input samples. At coarser levels, the functions
provide a smoothed representation of the color that is defined further
away from the input. We take a linear combination of these to get
a single color and weight function, weighting the contributions to
give preference to colors/weights at finer resolutions:

c(p) =
Λ−1

∑
`=0

c`(p) ·κ` and w(p) =
Λ−1

∑
`=0

w`(p) ·κ`

with Λ the number of levels in the octree and κ the weight (fixed at
κ = 32 in our experiments). Dividing the accumulated color by the
accumulated weights, we get the final color function:

C(p) = c(p)/w(p).

Table 1 shows the performance of our degree-one and degree-two
SPR implementations and compares the performance of our color
SSD reconstruction with the implementation provided in [CMT11].

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

M. Kazhdan & H. Hoppe / An Adaptive Multigrid Solver

Figure 5: Color reconstructions of the Eagle model at depth 10,
comparing SPR with our adaptive solver using degree-one elements
(top center), SPR with our adaptive solver using degree-two elements
(top right), the original SSD implementation [CMT11] (bottom left),
and the SSD reconstruction with our adaptive solver (bottom right),

Figure 6: Comparison of color reconstruction accuracy for our PSR
implementation using degree-one and degree-two elements, as well
as the original SSD [CMT11] and our SSD implementations at depth
10. Accuracy is measured in RMS and is computed by using half of
the points for reconstruction and measuring the one-sided difference
from the colors associated to the second half of the points to the
colors at the nearest point on the reconstructed surface.

Comparing the implementations, we see that all the methods incur
a small runtime cost for color interpolation. However, the original
SSD implementation incurs a substantially larger memory cost.

Figure 5 compares close-ups from the color reconstructions for
the Eagle model. As the figure shows, the different methods all pro-
duce similar color reconstructions. This is confirmed quantitatively
in Figure 6 which gives the root mean squared distance from the
colors of the input point set to the colors of the reconstructed surface,
and shows that all methods produce colors with comparable quality.

6.2. Gradient-Domain Image Stitching

In this application, the goal is to stitch together a panorama con-
sisting of multiple images by removing discontinuities along seam
boundaries. Following the approach of Agarwala [Aga07], stitching
can be formulated as the problem of finding the offset function that

removes the seams. This function is defined in the gradient-domain
by setting the gradients to be equal to zero away from the seams (so
that adding the offset leaves the interior unchanged) and setting the
gradients to the negative of the composite’s gradient across the seam
(so that adding the offset removes the discontinuity). This reduces
the problem of image stitching to the solution of a Poisson equation.

As observed by Agarwala, the offset function should only be
high-frequency near the seams and can be well-represented using
an adaptive quadtree. We represent the target gradient field using
mixed-degree finite elements stored along (dual) edges.

An example of the stitching can be seen in Figure 7. The top
two rows show the input composite (with visible seams between
individual images of the panorama), as well as a mask showing
the assignment of pixels in the composite to input images. The
bottom two rows show the results obtained using our adaptive multi-
grid solver. As the figure shows, without adapted successive under-
relaxation (second row from bottom), ringing artifacts are prominent.
With (bottom row), these artifacts disappear. Figure 11 in the sup-
plemental compares the stitching results obtained with different
under-relaxation parameters α and β.

While it is difficult to compare directly to the method of Agar-
wala, we were able to compare our approach to the Distributed
Multigrid (DMG) solver [KSH10] which was shown to outperform
the approach of Agarwala, both in terms of running time and mem-
ory usage. Table 2 compares the running time and memory usage
of DMG with the running time and memory usage of our adaptive
multigrid solver. As the table shows, our solver provides significant
performance improvements at all but the largest images. (Consid-
ering the entire time required to perform the stitching, our method
runs in 60% of the time and uses 40% of the memory. Discounting
the time required to read in the input pixels and labels, and to write
the output, our method runs in 40% of the time.)

We believe that the deteriorating performance for high-resolution
images is due to the fact that DMG has a memory footprint that
is linear in the width of the image while the memory footprint of
our approach is linear in the number of seams. Assuming that the
resolution of individual images is constant, the number of individual
images, and hence the number of seams, grows linearly with the
size of the panorama. Thus, the DMG implementation has a mem-
ory footprint of O(N1/2) while our implementation has a memory
footprint of O(N), where N is the number of pixels.

See Figure 10 in the supplemental for additional results.

6.3. Euclidean Distance Transform Computation

In this application, the goal is to compute an approximation of the
unsigned Euclidean Distance Transform (EDT) of a surface in 3D
(i.e. the function giving the unsigned distance from each point in
3D to the nearest point on the surface). Following the Geodesics-
in-Heat approach of Crane et al. [CWW13], an approximation of
the EDT can be computed by solving two linear systems. The first
diffuses the rasterization of the surface into a 3D grid, transforming
a compactly supported representation of the surface into a globally
supported function. Using the fact that the gradients of the smoothed
rasterization point away from the surface, the second system fits

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

M. Kazhdan & H. Hoppe / An Adaptive Multigrid Solver

Figure 7: Image stitching showing the composite and assignment
mask for the individual images making up the Jerusalem panorama
(top two rows), the results of stitching without (third row) and with
(bottom row) adapted under-relaxation.

a distance function to the normalized gradients of the smoothed
rasterization. Combining the two steps, one obtains a smoothed
approximation of the EDT, with the extent of smoothing determined
by the diffusion time in the first step.

As both systems use only first-order derivatives, Geodesics-in-
Heat can be implemented using degree-one finite-elements. Further-
more, because the smoothed rasterization and the output EDT are
only high-frequency near the input surface, they can be compactly
represented using an adaptive octree.

Figure 8 (top) shows a visualization of the EDTs computed for
the Stanford Bunny model, showing the exact EDT computed using
the method of Saito and Toriwaki [ST94] (left) and the approximate
EDT computed using our adaptive multigrid solver without (center)
and with (right) adapted successive under-relaxation. For the visu-
alizations, we extracted isosurfaces at regularly sampled isovalues
and trimmed the isosurfaces with the yz-plane to reveal the inte-
rior surfaces. (The original surface is overlaid with transparency.)
Figure 13 in the supplemental compares the EDTs obtained with
different under-relaxation parameters α and β.

The advantage of our approach is highlighted in Table 3 which
compares the running time and memory usage of our approximate
implementation with the implementation from [ST94], at different

I/O DMG Ours
Pixels Seams sec. sec. MB sec. MB

Emilion 9 MP 8 K 1 5 119 2 13
Beynac 11 MP 5 K 1 6 124 2 12
Rainier 23 MP 10 K 2 6 180 4 17
PNC3 29 MP 27 K 2 16 183 4 29
Sedona 34 MP 17 K 4 10 192 6 21
Edinburgh 50 MP 68 K 5 13 207 9 64
Crag 64 MP 36 K 7 15 230 10 36
Red Rock 87 MP 50 K 7 20 253 13 49
Jaffa 230 MP 197 K 17 46 287 28 158
Black Tusk 240 MP 143 K 18 46 286 29 118
Douthat 320 MP 187 K 23 64 329 38 151
Cad Idris 380 MP 311 K 28 75 339 48 245
Tallinn 2 420 MP 220 K 27 77 355 47 178
Jerusalem 440 MP 277 K 32 85 344 54 220
Shenandoah 648 MP 403 K 53 133 378 87 324
Tallinn 7 860 MP 568 K 74 165 369 118 442
Old Rag 1 GP 663 K 93 180 473 142 513
Old City 3 GP 2 M 234 555 527 464 1517
St. James 2 3 GP 3 M 417 700 540 760 2687

Table 2: Comparison of running time (seconds) and memory usage
(MB) for the DMG solver [KSH10] with the implementations using
our adaptive solver. (I/O times for reading/decompressing the input
and writing/compressing the output are also provided.) For our
implementation, the system is solved by performing a single V-cycle
multigrid pass.

depths. The implementation of Saito and Toriwaki has linear running
time and memory usage and provides an efficient solution at coarser
depths/resolutions as it is trivially parallelizable and only requires
a regular grid as a data-structure. (At depth 8 the method of Saito
and Toriwaki runs in 40% of the time, but requires 2.5 times the
memory.) In contrast, our approach is only linear in the number of
octree nodes and becomes more efficient at finer depths/resolutions.
(At depth 9 our method runs in 85% of the time and uses 1/11th of
the memory. At depth 10 our method runs in 20% of the time and
uses 1/27th of the memory. At depth 11 the method of Saito and
Toriwaki cannot maintain the 20483 voxel grid in memory.)

A further advantage of our approach is highlighted in the plot in
Figure 8 (bottom), which shows the output level-set complexity as a
function of the distance from the input mesh. Using a regular grid,
the number of triangles grows with the surface area, and hence with
distance. In contrast, using an adaptive octree, grid cells become
larger away from the surface, resulting in larger marching-cubes
triangles and hence lower-tessellation outputs.

We note that our approach fails to capture the fine detail of the
exact solution. There are two reasons for this: (1) The Geodesics-
in-Heat approach computes a smoothed approximation of the EDT,
with the extent of smoothing growing as the diffusion time is in-
creased; (2) As our octree only adapts to the input geometry, our
solution is necessarily smooth away from the surface and fails to
resolve the high-frequency detail near the medial axis of the shape.

See Figure 12 in the supplemental for additional results.

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

M. Kazhdan & H. Hoppe / An Adaptive Multigrid Solver

Exact Ours
sec. MB sec. MB

Area Triangles 8 / 9 / 10 / 11 8 / 9 / 10 / 11 8 / 9 / 10 / 11 8 / 9 / 10 / 11

Iris 0.03 20 K 1 / 6 / 86 / * 132 / 1028 / 8196 / * 1 / 2 / 4 / 13 15 / 28 / 77 / 252
Raptor 0.05 1716 K 1 / 6 / 78 / * 171 / 1067 / 8235 / * 4 / 5 / 8 / 20 138 / 138 / 138 / 337
Octopus 0.10 276 K 1 / 5 / 77 / * 138 / 1034 / 8202 / * 2 / 3 / 9 / 29 25 / 55 / 181 / 675
Fish 0.15 116 K 1 / 5 / 74 / * 134 / 1030 / 8198 / * 1 / 4 / 13 / 44 28 / 78 / 272 / 1032
Stool 0.15 2 K 0 / 5 / 81 / * 131 / 1027 / 8195 / * 1 / 3 / 11 / 41 28 / 75 / 255 / 940
Chair 0.16 5 K 0 / 5 / 81 / * 131 / 1027 / 8195 / * 1 / 3 / 10 / 38 26 / 73 / 250 / 930
Nefertiti 0.19 2 M 2 / 7 / 75 / * 178 / 1074 / 8242 / * 5 / 8 / 19 / 60 161 / 161 / 326 / 1229
Elephant 0.19 29 K 1 / 5 / 78 / * 132 / 1028 / 8196 / * 1 / 4 / 14 / 55 32 / 96 / 346 / 1315
Hand 0.19 98 K 1 / 6 / 82 / * 134 / 1030 / 8198 / * 1 / 4 / 14 / 55 35 / 102 / 354 / 1318
Armadillo 0.21 338 K 1 / 6 / 80 / * 139 / 1035 / 8203 / * 2 / 5 / 17 / 64 35 / 106 / 379 / 1440
Fertility 0.21 472 K 1 / 6 / 75 / * 142 / 1039 / 8206 / * 2 / 5 / 17 / 60 41 / 97 / 350 / 1349
Kitten 0.21 268 K 1 / 5 / 68 / * 138 / 1034 / 8202 / * 2 / 5 / 17 / 64 34 / 106 / 384 / 1463
Dragon 0.22 851 K 1 / 6 / 70 / * 151 / 1047 / 8215 / * 3 / 7 / 20 / 71 71 / 104 / 383 / 1489
Porsche 0.24 6 K 0 / 5 / 67 / * 131 / 1027 / 8195 / * 1 / 4 / 14 / 58 28 / 89 / 336 / 1344
Bunny 0.30 204 K 1 / 5 / 73 / * 136 / 1032 / 8200 / * 2 / 7 / 23 / 87 43 / 140 / 516 / 1994
Knot 0.31 391 K 1 / 5 / 72 / * 140 / 1037 / 8204 / * 3 / 8 / 25 / 95 49 / 159 / 566 / 2166
Gargoyle 0.33 418 K 1 / 5 / 72 / * 141 / 1037 / 8205 / * 3 / 8 / 26 / 99 47 / 157 / 586 / 2269

Table 3: Comparison of running time (seconds) and memory usage (MB) for the exact Euclidean Distance Transform calculation [ST94] with
the implementations obtained using our adaptive solver, at depths 8, 9, 10 and 11. For our implementation, the diffusion system is solved by
performing a single V-cycle multigrid pass while the gradient-fitting system is solved by performing a single cascadic multigrid pass.

Figure 8: Top: Comparison of the EDT obtained for the Bunny
model at resolution 5123 using the approach from [ST94] (left) with
the one obtained by solving the Geodesics-In-Heat system over an
octree of depth 9, without (middle) and with (right) adapted under-
relaxation. The figure shows regularly sampled level sets of the
EDT, trimmed to the yz-plane. Bottom: Output mesh complexity (in
triangles) as a function of the distance from the surface.

7. Summary and future work

We have described an extension of the solver initially presented in
[KBH06] and [KH13] for solving the (screened) Poisson equation, to
a general-purpose adaptive multigrid solver. We have demonstrated
several image- and geometry-processing applications in 2D and 3D,
and have shown that the abstraction of the solver does not come at
the cost of either running time or memory usage.

In the future, we would like to extend our solver in several ways:

Boundary Conditions To support applications in fluid simulations,
we would like to extend the solver to support boundary constraints. A
simple approach would be to use the existing capacity for prescribing
point-based constraints to enforce boundary conditions as a soft
constraint. A better solution may be to enforce boundary constraints
explicitly through integration at the finest resolution, and then using
the Galerkin method to restrict to coarser resolutions.

Ringing Though our solution to the ringing problem works well
in practice, we would like to consider more principled ways for
resolving this phenomenon. In particular, we would like to devise
a method that works consistently, independent of the number of
V-cycles, the number of Gauss-Seidel iterations, the order of the
B-spline, or the type of linear system being solved. One approach
may be to solve an inhomogeneous system where octree nodes
are assigned a proximity weight which is used to modulate the
contribution of the associated integral to the linear system. This
would encourage the solver to focus away from the refinement
boundaries in the restriction phase, reducing the over-fitting at these
boundaries and thereby alleviating the ringing.

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

M. Kazhdan & H. Hoppe / An Adaptive Multigrid Solver

Acknowledgements

We are very grateful to Aseem Agarwala and Matthew Uytten-
daele for sharing their image panoramas, and to the EPFL Com-
puter Graphics and Geometry Laboratory, the Stanford 3D Scanning
Repository, Aim@Shape, Nico Schertler, and Julie Digne for shar-
ing their 3D data. We would also like to thank Fatih Calakli, Daniel
Moreno, and Gabriel Taubin for sharing their SSD Surface Recon-
struction implementation.

This work is supported by the NSF award 1422325.

References

[Aga07] AGARWALA A.: Efficient gradient-domain compositing using
quadtrees. ACM Trans. Graph. 26 (2007), 94:1–94:5. 1, 9

[Bat17] BATTY C.: A cell-centered finite volume method for the Poisson
problem on non-graded quadtrees with second order accurate gradients. J.
Comput. Phys. 331 (2017), 49–72. 2

[Bur88] BURT P. J.: Moment images, polynomial fit filters and the prob-
lem of surface interpolation. In Proc. IEEE Computer Vision and Pattern
Recognition (1988), pp. 144–152. 8

[BXH10] BATTY C., XENOS S., HOUSTON B.: Tetrahedral embedded
boundary methods for accurate and flexible adaptive fluids. Computer
Graphics Forum 29 (2010), 695–704. 2

[CGFO06] CHENTANEZ N., GOKTEKIN T., FELDMAN B., O’BRIEN J.:
Simultaneous coupling of fluids and deformable bodies. In Proceedings
of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (2006), pp. 83–89. 1, 2

[CK11] CHUANG M., KAZHDAN M.: Interactive and anisotropic geome-
try processing using the screened Poisson equation. ACM Trans. Graph.
30 (2011), 57:1–57:10. 5

[CM11] CHENTANEZ N., MÜLLER M.: Real-time Eulerian water sim-
ulation using a restricted tall cell grid. ACM Trans. Graph. 30 (2011),
82:1–82:10. 2

[CMT11] CALAKLI F., MORENO D., TAUBIN G.: SSD surface re-
construction (v 3.0). http://mesh.brown.edu/ssd/software.
html, 2011. 7, 8, 9

[CT11] CALAKLI F., TAUBIN G.: SSD: Smooth signed distance surface
reconstruction. In Computer Graphics Forum (2011), vol. 30, pp. 1993–
2002. 1, 2, 6

[CT12] CALAKLI F., TAUBIN G.: SSD-C: Smooth Signed Distance Col-
ored Surface Reconstruction. Springer London, London, 2012, pp. 323–
338. 6

[CWW13] CRANE K., WEISCHEDEL C., WARDETZKY M.: Geodesics
in heat: A new approach to computing distance based on heat flow. ACM
Trans. Graph. 32 (2013), 152:1–152:11. 9

[DHK∗00] DOUGLAS C., HU J., KOWARSCHIK M., RÜDE U., WEISS
C.: Cache optimization for structured and unstructured grid multigrid.
Electronic Transactions on Numerical Analysis 10 (2000), 21–40. 5

[FKG15] FUHRMANN S., KAZHDAN M., GOESELE M.: Accurate iso-
surface interpolation with Hermite data. In Proceedings of the 2015
International Conference on 3D Vision (2015), 3DV ’15, pp. 256–263. 6

[FOK05] FELDMAN B., O’BRIEN J., KLINGNER B.: Animating gases
with hybrid meshes. ACM Trans. Graph. 24 (2005), 904–909. 1, 2

[FWD14] FERSTL F., WESTERMANN R., DICK C.: Large-scale liquid
simulation on adaptive hexahedral grids. IEEE Transactions on Visualiza-
tion and Computer Graphics 20 (2014), 1405–1417. 2

[GGSC96] GORTLER S., GRZESZCZUK R., SZELISKI R., COHEN M.:
The lumigraph. In Proc. Computer Graphics and Interactive Techniques
(1996), pp. 43–54. 8

[HW65] HARLOW F., WELCH J.: Numerical calculation of time-
dependent viscous incompressible flow of fluid with free surface. Physics
of Fluids 8 (1965), 2182–2189. 3

[IGLF06] IRVING G., GUENDELMAN E., LOSASSO F., FEDKIW R.:
Efficient simulation of large bodies of water by coupling two and three
dimensional techniques. ACM Trans. Graph. 25 (2006), 805–811. 2

[Kaz13] KAZHDAN M.: Screened poisson surface reconstruc-
tion (v 5.71). http://www.cs.jhu.edu/~misha/Code/
PoissonRecon/, 2013. 6, 7, 8

[KBH06] KAZHDAN M., BOLITHO M., HOPPE H.: Poisson surface
reconstruction. Symposium on Geometry processing (2006), 61–70. 1, 2,
3, 4, 11

[KFCO06] KLINGNER B., FELDMAN B., CHENTANEZ N., O’BRIEN J.:
Fluid animation with dynamic meshes. ACM Trans. Graph. 25 (2006),
820–825. 2

[KH13] KAZHDAN M., HOPPE H.: Screened Poisson surface reconstruc-
tion. ACM Trans. Graph. 32 (2013), 29:1–29:13. 1, 2, 3, 4, 5, 6, 11

[KM90] KASS M., MILLER G.: Rapid, stable fluid dynamics for computer
graphics. SIGGRAPH Comput. Graph. 24 (1990), 49–57. 2

[KSH10] KAZHDAN M., SURENDRAN D., HOPPE H.: Distributed
gradient-domain processing of planar and spherical images. ACM Trans.
Graph. 29 (2010), 14:1–14:11. 9, 10

[LGF04] LOSASSO F., GIBOU F., FEDKIW R.: Simulating water and
smoke with an octree data structure. ACM Trans. Graph. 23 (2004),
457–462. 1, 2

[MGD∗10] MULLEN P., GOES F. D., DESBRUN M., COHEN-STEINER
D., ALLIEZ P.: Signing the Unsigned: Robust Surface Reconstruction
from Raw Pointsets. Computer Graphics Forum 29 (2010), 1733–1741.
1, 2

[OH95] O’BRIEN J., HODGINS J.: Dynamic simulation of splashing
fluids. In Proceedings of the Computer Animation (1995), pp. 198–205. 2

[Pfe63] PFEIFER C.: Data flow and storage allocation for the PDQ-5
program on the Philco-2000. Communications of the ACM 6 (1963),
365–366. 5

[Pop03] POPINET S.: Gerris: A tree-based adaptive solver for the incom-
pressible Euler equations in complex geometries. J. Comput. Phys. 190
(2003), 572–600. 1, 2

[SABS14] SETALURI R., AANJANEYA M., BAUER S., SIFAKIS E.: SP-
Grid: A sparse paged grid structure applied to adaptive smoke simulation.
ACM Trans. Graph. 33 (2014), 205:1–205:12. 2

[Sam90] SAMET H.: The design and analysis of spatial data structures.
Addison-Wesley Longman Publishing Co., Inc., 1990. 2

[ST94] SAITO T., TORIWAKI J.: New algorithms for Euclidean distance
transformation of an n-dimensional digitized picture with applications.
Pattern Recognition 27 (1994), 1551–1565. 10, 11

[TRS06] THÜREY N., RÜDE U., STAMMINGER M.: Animation of open
water phenomena with coupled shallow water and free surface simulations.
In Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation (2006), pp. 157–164. 2

[WMT07] WANG H., MILLER G., TURK G.: Solving general shal-
low wave equations on surfaces. In Proceedings of the 2007 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (2007),
pp. 229–238. 2

[WS93] WARREN M., SALMON J.: A parallel hashed oct-tree n-body
algorithm. In Proceedings of the 1993 ACM/IEEE Conference on Super-
computing (1993), pp. 12–21. 2

© 2018 The Author(s)
Computer Graphics Forum © 2018 The Eurographics Association and John Wiley & Sons Ltd.

http://mesh.brown.edu/ssd/software.html
http://mesh.brown.edu/ssd/software.html
http://www.cs.jhu.edu/~misha/Code/PoissonRecon/
http://www.cs.jhu.edu/~misha/Code/PoissonRecon/

