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1. INTRODUCTION

Desirable images usually have smooth, antialiased edges. These
edges are a fortunate byproduct of capturing an image with a cam-
era, or are computed at a significant cost in off-line and interactive
rendering systems. In either case, sharp discontinuities in the scene,
such as object silhouettes or material boundaries, are properly fil-
tered to create smooth antialiased transitions. However, this impor-
tant aspect of an image is easily damaged by many common non-
linear transformations including simple intensity thresholding, tone
mapping, gamma correction, color transfer, histogram equalization,
applying a bilateral filter, or unsharp masking. Figure 1 shows an
example for intensity thresholding. After these filters are applied,
edges that were originally nicely antialiased (Figure 1a) often show
jagged transitions (Figure 1b).

We present a simple and effective method for restoring an-
tialiased edges that are damaged by these types of filters (Fig-
ure 1c). Our approach assumes that the original image is available
(Figure 2), that it is free of aliasing artifacts itself, and that the
filtered image is in one-to-one pixel correspondence with the orig-
inal. Thus, our algorithm works in conjunction with any filter that
applies a nonlinear transfer function to pixel values independently.
It also works for a limited class of nonlinear filters that replace the
value at each pixel with a weighted sum of the values in its local
neighborhood, such as bilateral filters and unsharp-masking filters.
In this way, our method can easily be incorporated into existing
image editing software systems (e.g., GIMP, Adobe Photoshop),
which provide access to the image data both before and after the
application of a particular filter. This offers a compelling alterna-
tive to the current state-of-the-art which involves a filter-specific
ad-hoc approach to repair damaged antialiased edges. However, our
algorithm does not apply to transformations that geometrically dis-
tort the original image such as magnification, rotation, or free-form
deformations.

Our algorithm has two basic steps. First, in the source image,
at each pixel that straddles an edge, we examine the colors adja-
cent to the edge, and estimate a blending model that reproduces
the observed antialiased color from these neighboring colors. More
precisely, we estimate the fractional coverage together with the col-
ors on either side of the scene discontinuity, with the assumption
that these colors are locally uniform. Second, we adjust the value
of each corresponding pixel in the filtered image such that it ex-
hibits the same blending relationship with respect to the colors in
its local neighborhood. This has the effect of modifying the local
gradients in the filtered image so that they are consistent with the
corresponding gradients in the original image. However, we apply
this correction adaptively and, guided by an edge detector, modify
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(a) Original image (b) Intensity threshold applied (c) Recovered edges (our result) (d) Reference

Figure 1. Applying simple thresholding to (a) a properly antialiased image results in (b) undesirable jagged edges. We present an algorithm
that (c) restores edges that were damaged by these types of nonlinear filters while remaining faithful to the intended effect. We compare this
result to (d) a reference image obtained by thresholding a higher-resolution version of this image and then downsampling.

Filtered FOriginal O Result R

Nonlinear
filter

Antialiasing 
recovery

Figure 2. Schematic of the overall algorithm.

only those pixels in the filtered image that straddle an edge that is
also present in the original image.

Due to the simplicity and parallel structure of our algorithm,
it can be easily implemented within a GPU pixel shader. We de-
scribe an implementation that is able to process more than 500
megapixels per second. This fast speed makes our method useful
as a lightweight post-processing step to accompany existing im-
age filters. We present results of applying our algorithm to images
processed with several common filters, and compare it to the re-
lated technique of morphological antialiasing (MLAA) [Reshetov
2009].

2. PRIOR WORK

Numerous sampling and filtering techniques have been proposed
for antialiasing images rendered using ray tracing or rasterization
(Pharr and Humphreys [2004] and Akenine-Möller et al. [2008]
survey recent techniques). However, far less attention has been paid
to the challenging problem of removing aliasing artifacts within
an image when there is no access to the underlying 3D scene.
One strategy is to perform dimensionality reduction on local im-
age patches using a method such as principal components analysis
(PCA) in order to isolate and attenuate high oblique frequencies
that typically accompany this phenomenon [Hyvärinen et al. 2009;
van Hateren and van der Schaaf 1998].

Reshetov [2009] recently introduced morphological antialias-
ing (MLAA), an image-based method for antialiasing rendered im-
ages. MLAA estimates the location and orientation of discontin-
uous “geometry” edges in the underlying scene using a template-
based search for jagged edge patterns in the raster image. These
areas are replaced with smooth transitions computed using an ana-
lytic edge model. Unlike these prior methods, we focus on a differ-
ent problem: repairing edge artifacts created by applying a certain
class of nonlinear filters to a properly antialiased image. Such arti-
facts are usually different from those introduced by point-sampling
during image synthesis, and do not satisfy the assumptions of pre-
vious methods. Our approach is unique in that it uses information
from a properly antialiased input image to repair damaged edges in
a filtered version. We believe we are the first to propose a solution
to this antialiasing recovery problem.

Our technique is also related to image matting algorithms
(see Wang and Cohen [2007] for a recent survey) in that both in-
volve determining the partial pixel coverage α of overlapping im-
age layers. Image matting attempts to separate the image into two
layers, foreground and background, with non-trivial α values oc-
curring only along a closed boundary containing the foreground.
However, edges that are damaged by a filter may occur anywhere
in the image and often have a complex topology. Our method iden-
tifies the complete set of edges even in these difficult cases and does
so using only local information at each pixel. This provides a more
efficient optimization as compared to most matting algorithms,
which must employ a global search. Furthermore, our method is
automatic and does not require, for example, the user to specify a
trimap.

Our algorithm builds on recent work that shows that the colors
within small patches in natural images often occupy a 1D subspace
of the full 3D color space [Omer and Werman 2004]. This “color
line” model has been successfully used for a number of similar in-
verse problems including alpha matting [Levin et al. 2006; Bando
et al. 2008], denoising [Liu et al. 2007; Joshi et al. 2009], demo-
saicing [Bennett et al. 2006] and deblurring [Joshi et al. 2009].

3. ANTIALIASING RECOVERY

Figure 3 provides an illustration of the antialiasing recovery prob-
lem in 1D. We assume that the portion of the scene imaged at a
single pixel is either uniform, in which case no edge is present,
or straddles a discontinuous transition between two regions of uni-
form color. We denote the original image O, the filtered image F ,
and the recovered image produced by our algorithm R. Let O[pi]
denote the color at pixel pi. At a pixel that straddles an edge, we
assume that the original antialiased color value is a simple linear
combination of the colors on either side:

O[pi] = αO[pi−1] + (1− α)O[pi+1], (1)

where α is the fractional coverage on the left side of the edge. This
is consistent with a smooth antialiased rasterization of this bound-
ary (Figure 3b). Furthermore, we assume that the result of applying
a nonlinear filter to this antialiased image is correct in uniform re-
gions, but may be incorrect at edge pixels (Figure 3c). For example,
imagine applying a non-monotonic transfer function at each pixel
independently. This could replace the value at an edge with a value
that is inconsistent with the transition across the boundary (marked
in red in Figure 3c). Our goal is to identify the edge pixels in the
filtered image F that may have been damaged and to adjust their
values so that they exhibit the same transition that was observed in
O (Figure 3d). Effectively, we combine O and F to approximate
the effect of having applied the nonlinear filter to the colors in the
underlying scene and then properly rasterizing the result.
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Figure 3. The image formation model and the stages of our antialiasing recovery algorithm. (a) The 3D scene imaged at each pixel is assumed
to be either uniform or to contain a discontinuous edge that separates two regions of locally uniform colors; (b) a properly antialiased and
focused image of this simple scene shows a smooth color transition; (c) the result of applying a nonlinear transfer function to the pixel
values gives an incorrect result at edge pixels; (d) our algorithm identifies these errant pixels and corrects them to be a consistent weighted
combination of the surrounding colors.

Our method is a generalization of this basic framework from 1D
to 2D. It operates independently at each pixel p, and consists of
two major steps: (1) estimating an antialiased edge model at each
edge pixel p in the original image O, and (2) modifying the cor-
responding edge pixel p in the filtered image F to reproduce that
antialiased edge. We next describe these steps in detail.

3.1 Fitting the antialiased edge model

For each edge pixel p in O, we seek to estimate the two uniform
colors ca and cb adjacent to the edge, as well as the fractional cov-
erage α, that together best explain the (antialiased) color c = O[p]
according to the image formation model in Figure 3. We accom-
plish this as follows.

Determining the color-space endpoints. Whereas in the
1D case of Figure 3 we could immediately determine the two neigh-
boring colors ca = O[pi−1] and cb = O[pi+1], for 2D images the
3 × 3 neighborhood offers 8 neighbors to choose from. Our solu-
tion to this ill-posed problem relies on two assumptions. First, we
assume that the two neighboring colors ca, cb are extrema in the
direction of maximum variance in color space. This not only gives
preference to sharp transitions between dissimilar colors, but also
respects the principal color distribution of the neighborhood. Sec-
ond, we assume that in color space, the color c of the center pixel is
approximately a linear combination of ca and cb, as in Equation 1.

We gather the set of 9 pixel colors ci in the neighborhood of pixel
p (Figure 4a), represented in linear RGB space, and compute their
first principal component x. This vector x corresponds to the direc-
tion of greatest variance in color space. We obtain x using the it-
erative Expectation Maximization (EM) scheme of Roweis [1997],
which has the benefit of requiring little storage — a crucial prop-
erty for efficient GPU implementation. This EM scheme reliably
converges after 2-3 iterations. We then form the line l = c+ x t
passing through c along the principal component direction, as il-
lustrated (in 2D) in Figure 4b. For each neighboring color ci, we
compute both its distance di to the line l, and the parametric coor-
dinate ti of its projection on l.

Next, we determine ca, cb as the two extrema colors along the
direction x and within a distance 3σd from line l. Formally, we
solve

ca = O[pa], cb = O[pb] where

(a, b) = argmax
(i,j)

(ti − tj) such that di, dj < 3σd.

R

G

c
l
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Figure 4. We examine the 3 × 3 neighborhood around each edge
pixel to determine the two extrema colors ca and cb that are as-
sumed to be blended together at the antialiased center pixel.

The parameter σd establishes a threshold on the distance from l
that we are willing to tolerate in these endpoints. Its purpose is to
remove outliers caused by excessive noise or the presence of a third
scene feature.
Determining pixel coverage values. Once the extrema col-
ors ca, cb are computed, it is straightforward to determine the
blending weights that best reproduce the antialiased center pixel
c = O[p]. This amounts to solving a linear least-squares system
that minimizes

dp = ‖(αpca + (1− αp)cb)− c‖ , (2)

subject to the constraint that 0 ≤ αp ≤ 1. Figure 4c visualizes the
residual color error dp for the optimal value of αp.

3.2 Correcting the filtered image

The second step in our algorithm is to correct each edge pixel p
in F that was potentially damaged by the filter. Specifically, we
would like each edge pixel in the recovered image R to exhibit the
same local blending that was observed in the input image:

R[p] = αpR[pa] + (1− αp)R[pb], (3)

where the blending factor αp and the pixel locations pa and pb
are the same as those computed for O[p]. Furthermore, at uniform
(non-edge) pixels, we want the corrected image to retain its value
in the filtered image:

R[p] = F [p]. (4)

To achieve this, we use an edge detection algorithm to compute the
presence of edges in O and F and balance these competing goals
according to the per-pixel edge strength.
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GPU THROUGHPUT FULL HD IMAGES

NVidia 8800 GTX 98 MP/s 47 fps
AMD ATI HD4870 194 MP/s 94 fps
NVidia 285 GTX 218 MP/s 105 fps
AMD ATI HD5870 559 MP/s 270 fps

Table I. Performance of our algorithm on different architectures.
We present both the throughput in megapixels per second and the
average framerate for a 1920× 1080 Full HD image.

Determining edge strength. Instead of making a binary de-
cision as to whether a pixel p in F straddles an edge or not, we
define a per-pixel edge strength ep as the product of the Sobel edge
detector at p in both O and F (Figure 5). Locating pixels that are
near edges in both the original and filtered images lets us restrict
antialiasing recovery to regions that were potentially damaged and
for which we have information necessary to repair them. More pre-
cisely, we define a continuous confidence value between 0 and 1
by combining this edge strength with the residual distance dp in
Equation 2:

βp = G(dp, σd)(1−G(ep, σe)), (5)

whereG(y, σ) = exp(−y2/σ2), and the parameter σe controls the
sensitivity of our algorithm to the strength reported by the Sobel
filter. If ep > 3σe, we set βp = 0 to prevent modifying F [p].

× =
Edges in O Edges in F Edge strength ep

Figure 5. The Sobel operator applied to the images from Figure 1
and our edge strength measure ep. Larger values of ep are darker.

Computing the recovered image. To compute the recovered
image R, we combine Equations 3 and 4 according to the confi-
dence value in Equation 5:

R[p] = βp(αpR[pa] + (1− αp)R[pb]) + (1− βp)F [p]. (6)

We obtain R by solving a large sparse linear system that encodes
this set of constraints. Note that pixels near edges (βp > 0) inter-
act with one another in this system of equations, whereas those in
uniform regions as well as local extrema (both with βp = 0) act to
condition the solution. This formulation has the benefit of tolerat-
ing thick edges (wider than one pixel) due to its ability to capture a
chain of interactions across several adjacent pixels.

3.3 Real-time GPU implementation

The fact that each step in the algorithm described in the previ-
ous sections can be executed in parallel allows implementing a fast
solver on modern graphics hardware. Our implementation renders
a full-screen quadrilateral in order to process image pixels in par-
allel in a fragment shader. We apply several iterations of the Jacobi
method to solve the linear system in Equation 6 with R = F serv-
ing as the starting point. This entails updating the value at each
pixel R[p] using values in the previous solution. Because aliased
edges tend to span only a few pixels, this process converges quickly

σ
d
=

0
.0
1

σ
d
=

0
.2

σe = 0.05 σe = 0.001

Figure 6. A demonstration of the insensitivity of our algorithm to
its two parameters. The output images are nearly identical over a
relatively broad range of values.

within only a few iterations. In our implementation, we always ap-
ply exactly 3 iterations. Table I summarizes the running times on
various GPUs.

Parameters. The two parameters in our algorithm control its
sensitivity to noise in the image σd and its sensitivity to the Sobel
edge detector σe. For a broad class of images (e.g. low-noise dig-
ital photographs), a single setting of these parameters performed
well in almost every case we considered. We used σd = 0.1 and
σe = 0.01 to generate all the results in Section 4. Furthermore,
we found that the algorithm is rather insensitive to changing these
parameters within a reasonable range (Figure 6). In other situations
that include extremely noisy or low-contrast images, or if the user
would prefer more aggressive correction to damaged edges, our
real-time algorithm permits interactive adjustment of these values.

4. RESULTS

We evaluate our algorithm by using it to repair the output of several
common image processing filters. We also compare our technique
to applying morphological antialiasing (MLAA) [Reshetov 2009]
directly to the filtered image F . This comparison is not altogether
fair, since MLAA does not consider the input image and is designed
to repair point-sampling artifacts in rendered images rather than
damaged edge gradients. However, we include this comparison to
emphasize the importance of using the underlying edge information
in the input image as is done in our approach.

• Intensity thresholding It is common to apply intensity
thresholding to a grayscale image to convert it to black-and-
white. In the example of Figure 1 this is done to remove noise
and elements from the underside of a scanned document. Al-
though this successfully isolates the foreground text, it damages
the smooth antialiased edges. The repaired image produced by
our algorithm agrees closely with a reference image obtained
by applying the threshold to the original image at 16 times the
resolution and then downsampling the result. Figure 7 shows a
comparison of our algorithm and MLAA for this image. By con-
sidering both the input and filtered images, our algorithm does a
better job of preserving the structure of the digitized text.
• Image abstraction A number of image filters, such as

anisotropic diffusion and color quantization, achieve a stylized
effect by blurring gradual transitions in an image while empha-
sizing strong boundaries. The first two rows in Figure 14 show
images produced using the technique of Kyprianidis et al. [2009].
Note that smooth edges in the input often become jagged in these
stylized renditions and that our algorithm is able to restore the
edges while remaining faithful to the effect.
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Our result MLAA applied to F

Figure 7. Comparison of our algorithm with MLAA for the appli-
cation shown in Figure 1.

• Bilateral filter Bilateral filtering is effective at removing
noise in uniform image regions without blurring strong bound-
aries. However, this can sometimes produce staircase artifacts
near edges [Paris et al. 2009] where the transitional colors are
biased towards the closer side of the uniform regions, as shown
in the third row of Figure 14. This undesired effect is often more
pronounced when the bilateral filter is applied iteratively. Joint
bilateral upsampling [Kopf et al. 2007] occasionally exhibits a
similar problem as seen in the last row of Figure 15. Our al-
gorithm greatly diminishes these artifacts by reproducing edges
with smooth transitions like those present in the input.
• Detail enhancement Algorithms for enhancing image de-

tails and contrast can damage smooth edges. The fourth row of
Figure 14 shows the result of applying an unsharp masking filter
to a cluttered image of groceries. The bottom row of Figure 14
shows another result of detail enhancement using an off-the-shelf
multiscale decomposition system [TopazLabs 2010]. In both ex-
amples, our algorithm successfully repairs jagged or distorted
edges without undermining the desired enhancement.
• Color replacement Replacing colors in an image, as is done

in the top row of Figure 15, often leads to artifacts along object
boundaries. We found that our algorithm is also useful in these
situations as well. Note that this presents a particularly challeng-
ing case for MLAA since these edges are not aliased, but rather
exhibit an incorrect color transition along the boundary.
• Color to gray The second row in Figure 15 shows the color-

to-gray filter of Kim et al. [2009] applied to a synthetic image
with a combination of strong and weak edges. This filter suc-
cessfully preserves the weak edges at the cost of damaging the
smooth transitions across the strong ones. This image presents a
difficult case for our algorithm since it includes corners where
multiple colors meet, which violates our color line model. This
results in undesired blending between originally similar colors
in some of these regions, although our algorithm does restore
smooth transitions elsewhere in the image. Furthermore, we have
found that these cases are rare in natural images.
• Gradient mapping A number of common operations (in-

cluding image colorization, color transfer and tonal adjustment)
map image intensity to a user-specified color gradient. This pro-
cess often produces artifacts near edges as demonstrated in the
images in the third and fourth rows of Figure 15. Our algorithm
successfully repairs these jagged transitions even for edges that
border regions of detailed texture.

5. DISCUSSION

5.1 Advantage over single-image approaches

Our algorithm uses the original antialiased image to estimate in-
formation about how colors are blended across edges in the scene.
This information is important and cannot always be accurately re-
constructed from the filtered image alone. Our results indicate that

(a) Original image (O) (b) Filtered image (F)

(c) Our result (R) (d) MLAA applied to F

Figure 8. Our algorithm and MLAA used to repair the edges in
an image of a resolution chart after an intensity threshold and a
colorization filter were applied.

incorporating information from both the input and filtered images
leads to superior reconstruction, especially in the following cases:

• Partially and already antialiased features It is difficult
to estimate a precise model of the way colors should be blended
across edges from the filtered image alone. This is particularly
true in instances where the edge is already partly antialiased and
a perfect staircasing transition is not present. This explains why
MLAA struggles in Figure 14, rows 1/2/3 and Figure 15, row 3,
particularly near vertical and horizontal lines. Another situation
worth highlighting is that when edges are already antialiased in
the filtered image, techniques like MLAA may falsely classify
these as edges in need of repair and consequently overblur them
(note the face closeup in Figure 14, row 3).

• Thin and crowded features Thin lines, especially when
they are parallel and close to one another, often lead to jaggies
and moiré patterns with many image filters. Thin features are
difficult to isolate using pattern matching techniques like those
employed by MLAA (note the comparison in Figure 14, row 4
and Figure 15, row 4). Additionally, aliasing patterns may be
misidentified as features and can even be reinforced with tech-
niques like MLAA that only consider the filtered image. A strik-
ing example of this is shown in Figure 8. An intensity threshold
and colorization filter have been applied to a properly antialiased
resolution chart. Note the superior job that our algorithm does
of repairing the damaged edges and eliminating the aliasing pat-
terns by virtue of having a much more accurate model of the lo-
cation and characteristics of the scene boundaries. Inferring these
boundaries from the filtered image alone is much more difficult
and often leads to distortions near thin or small features such as
the text in Figure 7.
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• Incorrect chromatic transition The application of filters
such as color replacement and gradient mapping can result in an
abrupt colored edge rather than smooth transition (see Figure 3).
These types of edges cannot be repaired by analyzing the cor-
rupted image alone (for instance, see MLAA results in Figure 15,
row 1/2/3). However, by reproducing the transition present in the
original image, our method successfully addresses this case.

5.2 Comparison with a gradient-domain method

The process of extracting the gradient from one image and applying
it to another image has become a standard tool for seamless image
editing [Fattal et al. 2002; Pérez et al. 2003; Agrawal et al. 2005].
We experimented with using gradient-domain processing for an-
tialiasing recovery. This operates on grayscale images and involves
solving a Poisson equation at the edge pixels in the filtered image,
imposing that they exhibit the same gradients as in the original im-
age. The values at non-edge pixels in the filtered image are held
fixed and serve as boundary conditions. We found that the result of
this approach is very susceptible to the overall scale of the target
gradient. For example, if a filter changes the image contrast or in-
verts its intensities, then the gradient must be scaled accordingly to
achieve an acceptable solution. Figure 9 shows several results ob-
tained using this gradient-domain approach for repairing the edges
damaged by a simple intensity threshold (Figure 1). Even for this
simple case, a suitable scale factor for the gradient was determined
only through manual trial-and-error. Additionally, this approach is
unsuitable for filters that change the scale of the image gradient
non-uniformly over the image plane, or combine multiple channels
in a color image. In such cases, there is no single scale factor that
can be used (Figure 10). Because our method estimates the local
blending in 3D color space independently at each pixel, it doesn’t
suffer from these drawbacks. The local formulation used by our
algorithm also results in much greater computationally efficiency
compared to a global Poisson solver.

(a) Our result (b) Poisson (c) Poisson 3 · ∇ (d) Poisson 5 · ∇

Figure 9. Results of using a gradient-domain method to restore
edge pixels damaged by the application of an intensity thresh-
old. (b) Requiring that edge pixels in the filtered image have the
same local gradient as those in the original, lower-contrast image
leads to excessive smoothing. (c) Only when the gradient values are
scaled by an appropriate factor (in this case 3.0) do we achieve a
result comparable to ours (reproduced in (a)). (d) Applying a scale
factor to the gradient that is too large leads to excessive sharpen-
ing.

5.3 Comparison with a joint bilateral filter

The notion of using the edge information in one image to guide a
filtering process or optimization in another image is related to the
the joint/cross bilateral filter (JBF) [Petschnigg et al. 2004; Eise-
mann and Durand 2004; Kopf et al. 2007]. Intuitively, a JBF can

Original image (O) Our result (R) Poisson

Figure 10. Using a gradient-domain technique to recover an-
tialiased edges in a color image (cropped from Figure 8). Each
color channel is solved separately, using the gradient of a grayscale
input. The result contains many artifacts because the scale of the
gradient is not uniform. It differs from one channel to the next and
even within a single channel at different locations in the image.

be applied by replacing a damaged edge pixel with a weighted av-
erage of its neighboring pixels, where weights are dictated by a
Gaussian range filter of color distance in the original image. How-
ever, a JBF aims to keep colors separate across edge boundaries
instead of smoothly bridging them as is required for antialiasing
recovery. Technically speaking, the bilateral weights of pixels that
neighbor an edge pixel are not proportional to the fractional contri-
bution they make to the center edge pixel. Therefore, a JBF cannot
be directly applied to the problem considered here, as illustrated in
Figure 11. Note that using a smaller range variance (σ) exagger-
ates jaggy artifacts near edges, whereas a larger variance leads to
excessive blurring. There is no single setting of this parameter that
properly repairs the antialiased edges.

Original image (O) Filtered image (F) Our result (R)

JBF small σ JBF medium σ JBF large σ

Figure 11. Comparison of our method to using a joint bilateral fil-
ter (JBF), which is not designed for this task. These images show
the result of using three different range variances. In some cases,
staircase artifacts are exaggerated and in the others the features
are excessively blurred. No setting of the variance parameter pro-
duces a result that is competitive with our technique.

5.4 Limitations and future work

A limitation of our technique is that it assumes the input and filtered
images are in perfect correspondence. Therefore, our method is not
suitable for filters that introduce geometric distortions or intention-
ally affect the fidelity of the edges. One example of this is a simple
Gaussian blur filter. Attempting to use our method to restore the
original edges contradicts the intention of such a smoothing filter
and may produce artifacts (see Figure 12 for an example). Addi-
tionally, our technique is not designed to repair artifacts introduced
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by the filter in uniform regions of the input. Figure 13 shows a com-
mon haloing artifact produced by an unsharp masking filter. Based
on the original image alone, it is impossible to tell whether or not
this effect is desirable, and our algorithm does not attempt to alter
these regions.

Original image (O) Filtered image (F) Our result (R)

Figure 12. Our method used with a standard Gaussian blur.
This produces visible artifacts since reproducing sharp edges runs
against the goal of this filter.

Original image (O) Filtered image (F) Our result (R)

Figure 13. Haloing artifacts near edges caused by an unsharp
masking filter. These types of artifacts, which are introduced by the
filter in uniform regions of the input, are not treated by our tech-
nique which restricts itself to known edge pixels.

Future work might consider the more challenging case of filters
that geometrically distort the input image. This would require com-
puting a correspondence between the input and output that may
not be possible in all cases. Recently, image inpainting techniques
based on sparse coding have been proposed [Aharon et al. 2006;
Mairal et al. 2008]. These methods may offer an alternative ap-
proach for antialiasing recovery that involves building a dictionary
of small image patches that straddle edges in the input image and
using that dictionary to restore edge information in the filtered im-
age. However, we expect that this approach may share the same
“scale factor problem” that we encountered with gradient-domain
techniques (Section 5.2).

Another assumption worth relaxing in future work is the color-
line assumption. It is violated near corners or in image regions that
receive contributions from more than two scene elements. The syn-
thetic color-to-gray result in Figure 15 shows slight over blending
that our algorithm produces in these regions with weak edges. How-
ever, we consider this an extreme “stress test” of our system and
note that at many of these junctions the adjacent colors are very
similar in the original image. In more common natural images, we
observed that these problems almost never arise, as demonstrated
by the many other examples in Figures 8, 14 and 15. Furthermore,
we believe this limitation could be addressed through a more gen-
eral image formation model, although this would likely increase the
number of parameters in our optimization and might also require
imposing regularization conditions on the solution.

6. CONCLUSION

We have introduced a simple and effective technique for antialias-
ing recovery: repairing antialiased edges that are damaged by cer-
tain types of image filters. We presented results that demonstrate
the utility and robustness of this technique for a number of com-
mon image operations. The fact that our algorithm is embarrass-
ingly parallel allows a real-time implementation on modern graph-
ics hardware. Our method is the first solution to this problem and
we anticipate a number of improvements and extensions in future
work.
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Original antialiased image (O) Filtered image (F) Our result (R) MLAA applied to F
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Figure 14. Results with image abstraction, bilateral filtering, and detail enhancement filters. (Distortions are introduced by some PDF
readers. To see the differences most clearly, please zoom in, or refer to the full-resolution images in the supplemental material.)
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Original antialiased image (O) Filtered image (F) Our result (R) MLAA applied to F
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Figure 15. Results of our algorithm used with color replacement, color to gray, gradient domain filtering, and a colorization technique based
on joint bilateral upsampling.
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